

The VIth International Conference on the INITIAL STAGES OF HIGH-ENERGY NUCLEAR COLLISIONS

STAR Heavy Ion and Cold QCD program for 2021+ runs

Ting Lin, for STAR Collaboration

Texas A&M University

Supported in part by

Office of

Science

Outline:

- STAR Upgrades
 - Upgrades for BES-II
 - Forward Upgrades
- Heavy Ion Physics for 2021+
- Cold QCD Physics for 2021+
- Summary

STAR Detector Upgrades for BES-II

inner TPC (2019) $|\eta| < 1.5$

- Replace all inner TPC sectors;
- Increase rapidity coverage;
- Improve momentum and dE/dx resolution;
- Decrease minimum p_T from 125 MeV to 60 MeV;

Event Plane Detector (2018) $2.1 < |\eta| < 5.1$

- Replace Beam-Beam Counter (BBC);
- Extend rapidity coverage;
- Improve triggering capabilities;
- Improve event plane resolution;

Endcap Time of Flight (2019) $-1.5 < \eta < -1$

- Extend PID from $\eta = -1$ to -1.5;
- Improve the fixed target program;

STAR Forward Upgrade Ongoing:

STAR Forward Upgrade: ECal & HCal

Location: 7 m from the IP, at $2.5 < \eta < 4$ **Readout:** SiPMs

- Used in Trigger
- Split in 2 movable halves inside and outside of ring
- Slightly projective

ECal:

- Reuse PHENIX PbSc calorimeter with new readout;
- > On front face \rightarrow 1496 channel;
 - Tower size: 5.52×5.52×33 cm³
 - 66 sampling cells with 1.5 mm Pb
 - 4 mm Sc & Wavelength shifting fibers

HCal:

- Fe/Sc (20mm/3mm) sandwich;
- ➤ 520 channels in total;
- \blacktriangleright Tower size 10×10×84 cm³
 - In close collaboration with EIC R&D

Preshower

Use EPD as preshower;

Installation of entire system (HCal + ECal + Electronics) finalized by Feb 2021 ~9 month to commission systems before Run-22 500 GeV pp

STAR Forward Upgrade: ECal & HCal

STAR Forward Upgrade: Silicon and sTGC

<u>3 Silicon disks:</u> at 146, 160, and 173 cm from IP Built on successful experience with STAR IST

- Single-sided double-metal mini-strip sensors
 - Granularity: fine in ϕ and coarse in R
 - Si from Hamamatsu
- ▶ Frontend chips: APV25-S1 → IST all in hand
- Material budget: ~1.5% per disk
- Reuse
 - IST DAQ system for FTS
 - IST cooling system

<u>4 sTGC disks</u>: at 307, 325, 343 and 361 cm from IP Inside Magnet pole tip opening:

- Inhomogeneous magnetic field
- ▶ 4 quadrants double sided sTGC \rightarrow 1 layer
 - Diagonal strips to break ambiguities in the sTGC
- > Position resolution: ~200 μm
- Material budget: ~0.5% per layer,
- Readout: based on VMM-chips
 - following ATLAS design

Installation of entire Si and sTGC finalized by Mid of September 2021 ~2-4 month to commission systems before Run-22 500 GeV pp

STAR Forward Upgrade: Silicon and sTGC

January, 2021

Ting Lin - Initial Stages 2021

The 2021+ Physics program

Mid-rapidity $-1.5 < \eta < 1.5$

A+A

Beam:

FXT & 7.7 GeV: Au+Au (2021) 200 GeV: Au+Au (2023/25) 200 GeV: O+O (2021) Physics Topics:

- Complete BES-II program:
- Elliptic flow;
- Chiral magnetic effect;
- Azimuthal femtoscopy;
- Net proton kurtosis;
- Dilepton
- ..
- Origin of small system collectivity via O+O;
- Exploring the Nuclear Equation-of-State (EoS)
- Exploring the Microstructure of the QGP

$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow} \& \mathbf{p}^{\uparrow} + \mathbf{A}$

Beam: 500 GeV: p+p (2022) 200 GeV: p+p and p+A (2024)

Physics Topics:

Improve statistical precision:

- Sivers effect in dijet and W/Z production;
- Collins effect for hadrons in jets;
- ➢ Transversity and IFF
- Diffractive studies for spatial imaging of nucleon
- > Measurement of GPD E_g through UPC J/ Ψ
- Nuclear PDF and fragmentation function;

Forward-rapidity 2.5 $< \eta < 4$

A+A

Beam: 200 GeV: Au+Au (2023/25)

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to η~4;
- Constrain longitudinal structure of initial state;
- Global vorticity transfer:
- Rapidity dependence of Λ ,
 - Ξ, Ω polarization at STAR

$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow} \& \mathbf{p}^{\uparrow} + \mathbf{A}$

Beam:

500 GeV: p+p (2022) 200 GeV: p+p and p+A (2024)

Physics Topics:

- TMD measurements at high x
- Transversity, Collins;
- Sivers through DY and jets
- > UPC J/ Ψ GPD at forward rapidity;
- Nuclear PDFs and FF:
- R_{pA} for direct photons & DY, and hadrons
- Gluon Saturation through dihadrons, γ-Jets, di-jets

All of these measurements are critical to the scientific success of EIC to test universality and factorization

BES-II Progress:

Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Run Time	Number Events	Date
$({ m GeV}/{ m nucleon})$	$({ m GeV})$	(MeV)		Requested (Recorded)	Collected
13.5	27	156	24 days	(560 M)	Run-18
9.8	19.6	206	36 days	400 M (582 M)	Run-19
7.3	14.6	262	60 days	300 M (324 M)	Run-19
5.75	11.5	316	54 days	230 M (235 M)	Run-20
4.59	9.2	373	102 days	$160 \text{ M} (162 \text{ M})^1$	Run-20+20b
31.2	7.7 (FXT)	420	$0.5{+}1.1 \mathrm{~days}$	$100 {\rm ~M} (50 {\rm ~M}{+}112 {\rm ~M})$	Run-19+20
19.5	6.2 (FXT)	487	1.4 days	100 M (118 M)	Run-20
13.5	5.2 (FXT)	541	$1.0 \mathrm{~day}$	$100 {\rm M} (103 {\rm M})$	Run-20
9.8	4.5 (FXT)	589	$0.9 \mathrm{~days}$	100 M (108 M)	Run-20
7.3	3.9 (FXT)	633	$1.1 \mathrm{~days}$	$100 {\rm M} (117 {\rm M})$	Run-20
5.75	3.5 (FXT)	666	$0.9 \mathrm{~days}$	100 M (116 M)	Run-20
4.59	3.2 (FXT)	699	2.0 days	100 M (200 M)	Run-19
3.85	3.0 (FXT)	721	4.6 days	100 M (259 M)	Run-18
3.85	7.7	420	11-20 weeks	100 M	$\operatorname{Run-21^2}$

- Collecting 7.7 GeV data in 2021 to finish the BES-II program;
- 7.7 GeV is the essential bridge between Collider and FXT data;
- Hints of features at 7.7 GeV in several studies from BES-I;
- The planned Run-21 FXT measurements at $\sqrt{s_{NN}}$ = 3 GeV with the iTPC and eTOF give access to higher moment protons, precision ϕ , hyper-nuclei, and dilepton measurements;
- FXT data combined with collider data probes nuclear stopping.

3.0

2.5

2.0 Ko² 1.5 1.0

0.5

0.0

5

See Shengli Huang's talk for details.

Small System Run: O+O at $\sqrt{s_{NN}}$ = 200 GeV

- Prediction of different energy dependence for symmetric and asymmetric systems;
- Small symmetric system with similar N_{part} to p/d+Au, but different nucleon/subnucleon fluctuations;
- Analyzing power for 2k-particle cumulants $v_n\{2k\}$ scales with $N_{events} \times N_{part}^{2k}$; much less running time needed than for smaller nuclei;

See Maria Stefaniak's talk for details.

Constrain Longitudinal Structure of Initial State

- $V_{n\Delta}(\eta_a, \eta_b)$ is the Fourier coefficient calculated with pairs of particles in different η regions;
- $r_n(\eta_a, \eta_b)$ sensitive to different initial state inputs:
 - 3D-Glasma model: weaker decorrelation, describes CMS r_2 but not r_3
 - Wounded nucleon model: stronger decorrelation than data
- Precise measurement of r_n over a wide rapidity window will provide a stringent constraint:
 - Pin down the nature of the 3-dimensional initial state of heavy ion collisions;
 - Constrain different models of QCD from colliding nuclei;

Global Vorticity Transfer

- How exactly is the global vorticity dynamically transferred to the fluid?
- How is the local thermal vorticity of the fluid transferred to the spin angular momentum of the produced particles during the process of hadronization and decay?
 - Rapidity dependence of Λ , Ξ , Ω P_H at STAR, probe the nature of global vorticity transfer: Initial geometry and local thermal vorticity + hydro predict opposite trends.
- Can we reconcile P_H with vector meson spin alignment ρ_{00} ? Strong force field effect?
 - Precise measurements of ρ_{00} of K*, ϕ , J/ ψ .

Cold QCD Program:

\sqrt{s} (GeV)	Species	Luminosity	Year
500	$p^{\uparrow}+p^{\uparrow}$	400 pb ⁻¹	2022
200	$p^{\uparrow}+p^{\uparrow}$	235 pb ⁻¹	2024
200	$p^{\uparrow}+Au$	1.3 pb^{-1}	2024

- Kinematic coverage for 200 and 500 GeV p+p at STAR is 0.005<x<0.5;
- Provides best overlap with the x-Q² coverage of EIC;
- Precise factorization and universality tests;
- Overlapping x coverage enables detailed evolution studies;

Gluon Saturation

- Forward rapidity at STAR provides an unique opportunity to probe high gluon densities in p+Au collisions;
- STAR Forward upgrades characterize non-linear gluon effects through charged di-hadrons, γ -jet, di-jets;

Generalized Parton Distribution Function

- Exclusive J/ ψ TSSA measurement in UPC;
- Access GPD E_g for gluons, sensitive to spin-orbit correlation;
- iTPC and forward detectors will enable a high-impact measurement
 - A factor of 9-10 more data combining iTPC and forward upgrades, expected statistical error 0.02 for $\langle W_{\gamma p} \rangle$ = 14 GeV;

Nuclear PDF

- Direct photon measurement: constrain nuclear gluon distribution in a broad x range;
- Drell-Yan : constrain nuclear sea quark distribution in a broad x range;
- Contribute to a stringent test of the universality of nuclear PDFs when combined with data from EIC;

- The STAR Forward Upgrade is progressing very well, will be fully ready in 2022;
- These upgrades will substantially extend STAR's kinematic reach and further enhance its particle identification capabilities;
- The combination of the existing and ongoing detector upgrades enables a rich and compelling scientific program in the next few years.

Back Up

Constrain Temperature Dependence of Viscosity

- The rapidity dependence of the flow measurement is sensitive to $\eta/s(T)$;
- Lower beam energy at RHIC provides stronger variations of the temperature with rapidity;
- The BES-II and the forward upgrade of STAR will provide precise estimations of different azimuthal correlation observables;

Collins Effect

- Collins effect combines the collinear quark transversity in the proton with the TMD dependent Collins fragmentation function;
- Precision measurements at both energies probe TMD evolution and provide important crosschecks and essential x-Q² overlap with EIC;
- Collins effect in p+Au will provide an alternative universality test and a unique probe of the spin dependence of hadronization in cold nuclear matter;