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Abstract1

Local density fluctuations near the QCD critical point can be probed by intermittency2

analysis of scaled factorial moments in relativistic heavy-ion collisions. We report the3

first measurement of intermittency for charged particles in Au + Au collisions at
p

sNN =4

7.7-200 GeV from the STAR experiment at RHIC. We observe scaling behaviors in central5

Au + Au collisions, with the extracted scaling exponent decreasing from mid-central to6

the most central Au + Au collisions. Furthermore, the scaling exponent exhibits a non-7

monotonic energy dependence with a minimum around
p

sNN = 20-30 GeV in central Au8

+ Au collisions.9
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1 Introduction19

The major goal of the Beam Energy Scan (BES) at the Relativistic Heavy Ion Collider (RHIC)20

is to explore the phase diagram of quantum chromodynamics (QCD) [1, 2]. An important21

landmark of the QCD phase structure is the critical point (CP), which is the end point of first-22

order phase boundary between quark-gluon and hadronic phases [3]. In the thermodynamic23

limit, the correlation length diverges at the CP and the system becomes scale invariant and24
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fractal [4]. It is shown that the density fluctuations near the QCD critical point form a distinct25

pattern of power-law or intermittent behavior in the matter produced in high energy heavy-ion26

collisions [5].27

In analogy to the critical opalescence observed in conventional matter near the critical28

point, the related fractal and self-similar geometry of QCD matter will lead to local density29

fluctuations that obey intermittent behavior [5]. Based on the effective action belonging to30

three-dimensional Ising universality class, the intermittency of QCD matter is revealed in trans-31

verse momentum spectra as a power-law (scaling) behavior of scaled factorial moment (SFM)32

in heavy-ion collisions [5]. An intermittent behavior has observed in Si + Si collisions at 158A33

GeV from the NA49 experiment [6]. Meanwhile, studies based on a critical Monte Carlo with34

self-similar property [7] and transport model with hadronic potentials [8] demonstrate that35

the intermittency could be visible in Au + Au collisions at RHIC energies.36

2 Analysis Details37

In high-energy experiments, local power-law fluctuations can be detectable through the mea-38

surements of scaled factorial moment (SFM) which is defined as:39

40

Fq(M) =
〈 1

M D

∑M D

i=1 ni(ni − 1) · · · (ni − q+ 1)〉

〈 1
M D

∑M D

i=1 ni〉q
, (1)

where M D is the number of cells in D-dimensional momentum space, ni is the measured mul-41

tiplicity in the i-th cell, and q is the order of moment.42

Another expected power-law behavior that describes relationship between Fq(M) and F2(M)43

is defined as [9,10]:44

Fq(M)∝ F2(M)
βq. (2)

Moreover, the scaling exponentν quantitatively describes the values of βq:45

βq∝ (q− 1)ν. (3)

Here ν specifies scaling (power-law) behavior of Fq(M). According to Ginzburg-Landau (GL)46

theory, the critical ν is equal to 1.304 in entire space phase [9], while it is equal to 1.0 from47

the two-dimensional Ising model [10].48

The data reported here were obtained from Au + Au collisions at
p

sNN = 7.7, 11.5, 14.5,49

19.6, 27, 39, 54.4, 62.4 and 200 GeV, which were recorded by the STAR experiment at RHIC50

from 2010 to 2017. Protons (p), antiprotons (p̄), kaons (K±) and pions (π±) are analyzed51

as charged particles, and their identifications are carried out using the Time Projection Cham-52

ber (TPC) and the Time-of-Flight (TOF) detectors. To avoid the self-correlation, the central-53

ity was determined from uncorrected charged particles within a pseudo-rapidity window of54

0.5<| η |< 1, which was chosen to be beyond the analysis window of | η |< 0.5.55

To subtract the background at the level of SFM, a correlator ∆Fq(M) is defined in terms56

of original and mixed events, i.e., ∆Fq(M) = Fq(M)data − Fq(M)mix [6]. In addition, a cell-57

by-cell method is proposed for efficiency correction on SFM [11]. The statistical uncertainties58

are estimated by Bootstrap method, and the systematic uncertainties are estimated by varying59

the experimental requirements for tracks in the TPC and TOF.60
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Figure 1: Fq(M) (up to sixth order) of charged particles in transverse momentum
space for the most central (0-5%) Au + Au collisions at

p
sNN = 7.7-200 GeV in

double-logarithmic scale.

3 Results and Discussion61

Figure 1 shows Fq(M)data and Fq(M)mix , from the second order to the sixth order in the most62

central (0-5%) collisions for various
p

sNN. Based on the statistics of BES-I data, Fq(M) can be63

calculated in the range of M2 from 1 to 1002 and up to the sixth order (q=6). It is observed64

that Fq(M)data is larger than Fq(M)mix at large M2 region for various
p

sNN, thus a deviation65

of ∆Fq(M) from zero is present in central Au + Au collisions.66
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Figure 2: ∆Fq(M) (q=3-6) as a function of ∆F2(M) in the most central (0-5%) Au
+ Au collisions at

p
sNN = 7.7-200 GeV in double-logarithmic scale.

Figure 2 shows ∆Fq(M) (q=2-6), as a function of ∆F2(M) in the most central (0-5%)67

collisions for various
p

sNN. We clearly observe that the correlators ∆Fq(M) (q=3-6) exhibit68

scaling behavior with ∆F2(M).69

The value of βq is obtained through a power-law fit of Eq. (2) as shown in Figure 2, and its70

statistical error is determined by the fit. Figure 3(a) shows βq as a function of q−1 in the most71
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central Au + Au collisions for
p

sNN = 7.7-200 GeV. Consistent with theoretical expectation,72

βq also obeys a good scaling behavior with q, thus ν can be obtained through a power-law73

fit of Eq. (3). Figure 3(b) shows the extracted ν as a function of 〈Npar t〉 in central Au + Au74

collisions at various
p

sNN. We find that ν decreases from mid-central (30-40%) to the most75

central (0-5%) Au + Au collisions.76

Figure 4 shows the energy dependence of ν of charged particles in central Au + Au colli-77

sions at
p

sNN = 7.7-200 GeV. It is observed that the ν exhibits a non-monotonic behavior on78

collision energy and seems to reach a minimum around
p

sNN = 20-30 GeV. Higher statistics79

data from BES-II will help to confirm the trend of energy dependence of ν.80
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Figure 3: (a) βq (q=3-6) as a function of q-1 in most central Au + Au collisions at
p

sNN = 7.7-200 GeV. (b) ν as a function of 〈Npar t〉 in central Au + Au collisions.
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Figure 4: Energy dependence of ν for charged particles in Au + Au collisions at
p

sNN
= 7.7- 200 GeV. The statistical and systematic errors are shown in bars and brackets,
respectively.

4 Summary81

In summary, we report the first measurements of intermittency for charged particles in Au +82

Au collisions at
p

sNN = 7.7-200 GeV from the STAR experiment. Scaled factorial moments83

(up to the sixth order) for p, p̄, K± and π± within |η|< 0.5, have been measured in available84

transverse momentum space. Scaling behavior is clearly visible in Au + Au collisions which85

4



SciPost Physics Submission

is consistent with theoretical predictions. The scaling exponent is related to the critical com-86

ponent, and we observe that it shows a non-monotonic behavior on
p

sNN with a dip around87

20-30 GeV in the most central (0-5%) Au + Au collisions. This non-monotonic behavior needs88

to be understood with more theoretical inputs. With significantly improved statistics, the RHIC89

BES Phase-II program will allow for a more precise measurement of intermittency in heavy-ion90

collisions.91
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