

Elliptic flow measurements of strange and multi-strange hadrons in isobar collisions at RHIC

Vipul Bairathi

(for the STAR Collaboration)

Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

Introduction: Elliptic flow

P. Klob, U. Heinz, Nucl. Phys. A715, (2003) 653c; A.M. Poskanzer & S.A. Voloshin, Phys. Rev. C 58 (1998) 1671

Motivation

- Elliptic flow of (multi-)strange hadrons provide information on initial state anisotropies.
- Study of elliptic flow in isobar collisions may help in understanding the deformation of the colliding nuclei. for identified hadrons, one can check the ratio between the two isobar system:

$$\frac{(\mathbf{v}_2)_{\mathrm{Ru}+\mathrm{Ru}}}{(\mathbf{v}_2)_{\mathrm{Zr}+\mathrm{Zr}}} \stackrel{?}{=} 1$$

 Comaprison of elliptic flow among systems with different nuclear size can help in understanding system size dependence of the azimuthal anisotropy

G. Giacalone et al., Phys. Rev. C 104 (2021) L041903, M. S. Abdallah et al. (STAR), Phys. Rev. C 105 (2022) 14901

STAR experiment

Dataset: Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV (2018)

Approximately 3.6 B events have been analysed

Vipul Bairathi

• 2nd harmonic event plane angle is defined as:

$$\Psi_{n} = \frac{1}{n} \tan^{-1} \left\{ \frac{\sum_{i} w_{i} \sin(n\phi_{i})}{\sum_{i} w_{i} \cos(n\phi_{i})} \right\}; \text{ for } n = 2$$

- Event plane angle calculated in two different η windows
 (a) -1.0 < η < -0.05 and (b) 0.05 < η < 1.0
- The event plane angle resolution:

$$R = \sqrt{\cos 2(\Psi_2^a - \Psi_2^b)}$$

• Resolution correction applied to obtain the final v_2

Particle identification

- K_{s^0} , ϕ , Λ , Ξ , and Ω have been reconstructed from their decay products using invariant mass technique.
- Background reconstruction using Event-mixing method for ϕ -mesons, rotation method for K_{s}^{0} , Λ , Ξ , and Ω .
- Signal extracted using bin counting within $\pm 3\sigma$ of the invariant mass peak for weak-decay particles and using Breit-Wigner fit for ϕ -mesons.

Flow analysis method

Event plane method:

• Particle raw-yield as a function of $\phi - \Psi_2$ is fitted with a function for different p_T ranges to extract observed v_2 coefficients.

- Elliptic flow v₂ shows a particle mass ordering at low p_T for minimum bias isobar collisions at $\sqrt{s_{NN}} = 200$ GeV.
- Splitting of flow coefficients between baryons and mesons at intermediate p_T region (>2 GeV/c) is observed.
- A similar p_T dependence is observed in both Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV.

Centrality dependence of v₂(p_T)

Elliptic flow $v_2(p_T)$ increases from central to peripheral collisions showing strong centrality dependence which indicate effect of initial eccentricity in isobar collisions at $\sqrt{s_{NN}} = 200$ GeV.

Centrality dependence of v₂(p_T)

Elliptic flow $v_2(p_T)$ increases from central to peripheral collisions showing strong centrality dependence which indicate effect of initial eccentricity in isobar collisions at $\sqrt{s_{NN}} = 200$ GeV.

Constituent quarks scaling

 $n_q = Number of constituent quarks (3 for baryons and 2 for mesons); Transverse kinetic energy (KE_T) = m_T - m₀$

- NCQ scaling hold good to $\pm 10\%$ within uncertainties in both Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV.
- Elliptic flow (v_2) scaled by number of constituent quarks falling on a universal curve, indicating partonic collectivity.

- p_T -integrated elliptic flow $\langle v_2 \rangle$ for strange and multi-strange hadrons increases from central to peripheral collisions.
- Ratio of integrated v₂ between Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV for strange hadrons (K_s⁰, Λ , and $\overline{\Lambda}$) show deviation from unity by 2% wtih >= 2 σ significance in mid-central (10-60%) collisions.

Indication of larger nuclear deformity in Ru nuclei than in the Zr nuclei

• Elliptic flow $v_2(p_T)$ of strange hadrons at $p_T > 2$ GeV/c in isobar collisions is higher than the Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV and lower compared to U+U and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

Elliptic flow at high p_T incresases with atomic mass number of nuclei indicating a nuclear size dependence

B. I. Abelev et al. (STAR), Phys. Rev. C 77 (2008) 054901, Phys. Rev. C 81 (2010) 044902; M. S. Abdallah et al. (STAR) Phys. Rev. C 103 (2021) 064907

System size dependence (multi-strange)

* Error bars are combined statistical and systematic uncertainties

Elliptic flow of multi-strange hadrons in the measured p_T range for isobar collisinos at $\sqrt{s_{NN}} = 200$ GeV shows nuclear size dependence similar to the strange hadrons, while ϕ -meson shows weak or no system size dependence.

B. I. Abelev et al. (STAR), Phys. Rev. C 77 (2008) 054901
B. I. Abelev et al. (STAR), Phys. Rev. C 81 (2010) 044902
L. Adamczyk et al. (STAR), Phys. Rev. Lett. 116 (2016) 062301
M. S. Abdallah et al. (STAR) Phys. Rev. C 103 (2021) 064907

Model Comparison

AMPT-SM model with and without nuclear deformation can describe the data in the measured p_T range for minimumbias isobar collisions at $\sqrt{s_{NN}} = 200$ GeV

Model Comparison

AMPT-SM model with and without nuclear deformation can describe the data in the measured p_T range for minimumbias isobar collisions at $\sqrt{s_{NN}} = 200$ GeV

Summary

• Elliptic flow of strange (K_{s^0} , Λ , $\overline{\Lambda}$) and multi-strange (ϕ , Ξ , Ω) hadrons has been measured using event plane method in isobar (Ru+Ru and Zr+Zr) collisions at $\sqrt{s_{NN}} = 200$ GeV at RHIC.

Partonic collectivity:

- Strong centrality dependence and NCQ scaling of v_2 for (multi-)strange hadrons in isobar collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Partonic collectivity in isobar collisions at $\sqrt{s_{NN}} = 200$ GeV at RHIC

Nuclear size and deformation:

- Elliptic flow $\langle v_2 \rangle$ ratio between two isobars (Ru/Zr) shows a deviation of 2% from unity in mid-central collisions
 - ► Indicates higher deformation in Ru than in Zr nuclei
- $v_2(p_T)$ at higher p_T (> 2 GeV/c) for strange hadrons increases with increasing system size
 - Indicates effect of nuclear size on elliptic flow at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Thank you for your attention!

Backup

Particle identification

- $K_{s^{0}}$, ϕ , Λ , Ξ , and Ω have been reconstructed from their decay products.
- Background reconstruction using various methods: Event-mixing method for ϕ -mesons, rotation method for K_s⁰, A, Ξ , and Ω .

AMPT (String Melting) Model:

• Parton-Parton interaction cross-section 3 mb is used.

Woods-saxon distribution: $\rho(r,\theta) = \rho_0 / \{1 + e^{[(r - R(\theta,\varphi))/a]}\}$ $R(\theta,\varphi) = R_0 [1 + \beta_2 Y_{2,0}(\theta,\varphi) + \beta_3 Y_{3,0}(\theta,\varphi)]$

Default	R ₀	a	β ₂	β ₃
Ru	5.096	0.54	0.0	0.0
Zr	5.096	0.54	0.0	0.0
Deform	R ₀	a	β ₂	β ₃
Deform Ru	R ₀ 5.09	a 0.46	β ₂ 0.162	β ₃ 0.0