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ABSTRACT

MEASUREMENT OF POLARIZED PROTON - PROTON
ELASTIC SCATTERING AT THE RELATIVISTIC HEAVY ION
COLLIDER (RHIC)

Ivan Koralt
Old Dominion University, 2013
Director: Dr. Stephen Biiltmann

Elastic proton-proton (pp) scattering is one of the most fundamental processes
in nature and yet, it is one of the most difficult to describe. There are two
interactions involved in this process: electromagnetic (Coulomb) and hadronic
(strong) interactions. Underlying exchange mechanisms of these two interactions
are the virtual photon and the Pomeron exchange, respectively. The difficulty of
elastic pp scattering arises from the fact that the nature of the Pomeron and its
exchange are not well understood and need a theoretical approach, which is still
under development.

At the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab
(BNL) we are studying the hadronic interaction via the dynamics of high-energy
pp collisions using the Solenoidal Tracker At RHIC (STAR) detector. The “Physics
With Tagged Forward Protons At STAR” experiment, formerly known as the
“pp2pp” experiment, is a part of STAR and it successfully conducted measurements
of elastic scattering observables by the use of its forward particle detectors, known
as Roman pots.

In this dissertation I present the measurement of polarized pp elastic scattering
at RHIC. T describe the “pp2pp at STAR” experiment focusing on elastic scattering
observables from the data taken in Run9. I report the result of the experimental
slope parameter B of the diffractive peak of the elastic cross-section at the
center-of-mass energy /s = 200 GeV in the four-momentum transfer squared ¢
range 0.006 < [t| < 0.02 (GeV/c)® T also present data analysis techniques and
Monte Carlo simulations developed for the analysis and improvement of the detector
performance, correction of the recorded experimental data and an estimate of

systematic errors of this measurement.
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CHAPTER 1

INTRODUCTION

Elastic proton-proton scattering is one of the most fundamental processes in
nature and yet, it is one of the most difficult to describe. This difficulty arises from the
fact that the coupling constant (o) of Quantum Chromodynamics (QCD) becomes
large in the low four-momentum transfer squared |¢| region, which makes this process
intrinsically non-perturbative. Consequently, the straight forward calculations from
perturbative Quantum Chromodynamics (pQCD) become non-applicable for the
description of elastic proton-proton scattering at low-|t|. Instead, in order to study
the dynamics of the low-|t| scattering process in pp elastic collisions, an examination
of our understanding of the underlying interactions and the associated exchange
mechanisms is needed.

There are two fundamental interactions involved in elastic pp scattering,
electromagnetic (Coulomb) and hadronic (strong). While the former can be precisely
described by Quantum Electrodynamics (QED), the latter is not well understood
and needs a non-pQCD theoretical approach, which is still under development.
Theoretical models, available to date, are used to describe the exchange mechanism
by approaches that are more or less based upon Regge theory and/or an eikonal
formalism. These models put great effort in the attempt to connect Regge and
QCD concepts. In Chapter 2] we will discuss some of these models. Also, we
will give a description of the kinematics of the diffractive processes, focusing on
elastic scattering. Furthermore, Chapter [2| discusses spin-independent observables:
total cross-section oy, exponential slope parameter B and parameter p, in both pp
and pp scattering experiments. Measurement of these spin-averaged observables at
various center of mass system (cms) energies is important in understanding exchange
mechanisms that dominate in the diffractive processes at low and high energies, as
well as in the description and understanding of the features observed in the behavior
of total elastic and differential cross-sections at different energies.

Protons and their interactions can be studied in particle colliders or in fixed
target experiments. Facilities, such as the Large Hadron Collider (LHC) at CERN
or the Relativistic Heavy Ion Colider (RHIC) at Brookhaven National Lab (BNL)



have experiments that focus on high-energy proton collisions for the study of the
dynamics of the scattering processes in both polarized and unpolarized proton beam
collisions. Previous pp and pp scattering experiments conducted at CERN and FNAL,
provided differential and total cross-sections at different cms energies and |¢|-ranges.
The total cross-sections of both pp and pp measurements reach minimum values at
Vs = 10 GeV, and show a slow rise towards higher energies. Regge theory, for
example, describes this behavior by postulating a Reggeon with quantum numbers
of the vacuum, in Pomeranchuk theorem called the Pomeron. The Pomeron is
considered a dynamical system, rather than a particle, often described in pQCD
as a color singlet combination of two or more gluons. It has mass, no spin and no
electric or color charge. Although the Pomeron phenomenology is well described in
Regge theory, its exact nature remains obscure. Therefore, more measurements are
needed in order to guide the theoretical research.

The highest cms energies in pp collisions are achieved by the TOTEM experiment
at LHC (CERN), reaching to date 8 TeV with unpolarized beams, and by the
Intersecting Storage Ring (ISR) experiments, also at CERN, reaching 20 GeV by
colliding polarized beams. The Relativistic Heavy Ion Collider (RHIC), on the
other hand, has the unique capability of colliding identical polarized species, like
protons, in a previously unexplored cms energy range: 50 < /s < 500 GeV. This
gives the unique opportunity to study both dynamics and the spin-dependence of
pp scattering in previously inaccessible energy and four-momentum transfer squared
ranges. The “Physics With Tagged Forward Protons At STAR” experiment at RHIC,
formerly known as the “pp2pp” experiment is dedicated to the spin-dependent and
spin-independent hadronic phenomena at these energies and low-|t| range. Since the
beginning of its operation, in the time span of several runs, it successfully conducted
the measurements of the spin-dependent and spin-independent observables by the use
of its forward detectors, known as Roman pots. Roman pots are cylindrical vessels
that house Si micro-strip detectors used for particle detection. These cylindrical
vessels are inserted into the beam pipeline to bring silicon detectors as close as
possible to the outgoing proton beam, without disturbing the accelerator vacuum.
Chapter [3] is dedicated to all experimental aspects of the “Physics With Tagged
Forward Protons At STAR”.

Chapter (4| is dedicated to the latest data collection period in 2009 (Run9), with

transversely polarized proton beams collisions at 200 GeV cms energy. In a four



day dedicated run during the 2009 data taking period, a sample of 33 million elastic
triggers was recorded. We present beam tune and overall accelerator performance
during this four day dedicated running period.

Chapters [} [6] and [7] are the core of this work. Chapter [§] covers the detailed
description of the procedure followed and the selection criteria used in the extraction
of elastic events out of the 33 million elastic triggers, recorded in 2009. The extraction
of the nuclear slope parameter B in a combined fit to the differential cross-section,
which is the main result of this work, is reported in Chapter [7| and the study of all
systematical effects observed in recorded data from 2009 is presented in Chapters
[6] and For corrections of certain systematic effects, like a trigger bias, Monte
Carlo simulations using the GEANT4 toolkit were developed. We elaborate on both
systematic effects and Monte Carlo simulations in detail, also in Chapter [6] Finally,
the result of the experimental slope parameter B of the diffractive peak of the elastic
cross-section in the ¢ range 0.006 < |¢t| < 0.02 (GeV/c)? and /s = 200 GeV obtained
from RHIC Run9 is presented in Chapter [0



CHAPTER 2

THEORETICAL BACKGROUND

2.1 HADRONIC PROCESSES

Hadronic processes are classified in two distinct classes: soft processes and hard

processes [14].

e Soft processes are characterized by one energy scale which is of the order of the
hadron size R (~1 fm). This is the only scale of the process. In general, these
processes are characterized by a small momentum transfer (|t| ~ 1/R? ~ few
hundred MeV?), cross-section ¢-dependences of an exponential nature (do/dt ~
eIy and a high suppression of large-|¢| events.

Typical examples of soft processes are elastic hadron-hadron scattering and
diffractive dissociation.

The presence of a large length scale (R) makes these processes intrinsically
non-perturbative and from the theoretical point of view, perturbative quantum
chromodynamics (pQCD) is inadequate for their description. Instead, Reggie
theory [15], [16], [17], is used. According to this theory, soft hadronic processes
at high energies are universally dominated by the exchange of an enigmatic

object, the Pomeron.

e Hard processes are characterized by two or more energy scales, one of the

2

order of the hadron size R (~1 fm) and another “hard” energy scale with
large momentum transfer (of the same order as this scale, 2> 1 GeV?). Typical
cross-section dependences on the momentum transfer in hard processes are
power-like, modulo logarithms.

The examples of hard processes are deep inelastic scattering (the momentum
transfer is ¢?, the virtuality of the exchanged photon or vector boson) and
large-pr jet production (the momentum squared is —p?).

The high ¢? allows usage of perturbative QCD. However, a part of the process

is still non-perturbative in nature and this component is embodied in the



quark-gluon distribution (or fragmentation) functions of hadrons. The so-called
“factorization theorems” [I§] ensure that perturbative and non-perturbative
parts are well separated from each other. The latter is universal: it can be

extracted from one process and used to predict another one.

In recent years, the interest in finding and investigating hadronic diffractive processes
that have both soft and hard properties at the same time arose, because these
processes open up the possibility of studying diffraction (to some extent) in a
perturbative framework. In other words, these processes open the possibility for
investigating the QCD nature of the Pomeron, and more importantly, for translation
of Reggie theory (phenomenology of soft phenomena) into the language of QCD, the

theory of strong interactions.
2.1.1 HADRONIC DIFFRACTIVE PROCESSES

A general definition of hadronic diffractive processes is formulated as follows:

e A reaction in which no quantum numbers (other than those of the vacuum)
are exchanged between the colliding particles is, at high energies, a diffractive

reaction.

In other words, diffraction is the process, asymptotical in nature (falls
asymptotically), that takes place whenever the diffused and incident particles have
the same quantum numbers.

In the definition above, no quantum number exchange is only necessary, but not
a sufficient condition. However, the main advantage of this is because it is simple

and general enough to cover all cases:

e clastic scattering, when exactly the same incident particles emerge after the

collision, Fig.
1+251 42 (1)

e single diffraction, when one of the incident particles emerges out of the collision

unchanged while the other one gives rise to a final state of particles with the
same quantum numbers, Fig. .

1+2—1+X, (2)



e double diffraction, when each incident particle gives rise to a bunch of final
particles with exactly the same quantum numbers of the two initial particles,

Fig. .

An operational definition of the hadronic diffraction processes, equivalent to the one

above, is:

o A diffractive process is characterized by large, non exponentially suppressed,

rapidity gap in the final state.

The requirement of having a large rapidity gap in the final state (a large angular
region in which no outgoing particles are detected) is again, not a sufficient
condition for characterizing diffraction. There is another condition that needs
to be added to this definition and that is a non exponential suppression of the
rapidity gaps in the final state. In this way, contamination with non-diffractive
events is avoided. True diffraction can be distinguished only asymptotically from
non-diffraction contributions, as it is known that the latter decreases with energy.

The theoretical framework for describing diffraction is Reggie theory. This theory
provides a bridge between the two definitions from above. It describes hadronic
processes at high energies in terms of exchanging “objects” (not particles) called
Reggeons.

The Reggeon with quantum numbers of the vacuum, which dominates
asymptotically, is called Pomeron. In Regge theory, the exchange of other objects
with vacuum quantum numbers is suppressed at high energies. Therefore, the
diffractive processes are dominated by the exchange of the Pomeron. In the language

of Regge theory, “diffraction” is equivalent to Pomeron exchange.
2.1.2 KINEMATICS

Elastic scattering, Eq. is a special case of a two body exclusive scattering

process which is given by:

1+2—=34+4 (s— channel, Fig.[2(a)). (4)

In elastic scattering, two particles remain unaltered, but they have a different

kinematic configuration in the final state, Eq. (1). This type of scattering can be
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FIG. 1. Diffractive process classes. Left: a Feynman-like diagram showing the nature
of the process, with Pomeron exchange (the double lines) as an effective description of
the diffraction phenomena. Single external lines denote protons, the triple outgoing
lines represent proton dissociation. Right: a sample hit map in the pseudorapidity

(n) vs. azimuthal angle () space.

described by two independent variables, usually chosen among the three Mandelstam
variables.

Mandelstam wvariables are used to describe the interaction of the incoming
particles in high-energy scattering processes and to characterize the kinematics of
the scattering.

Consider the elastic scattering of two protons in the center of mass (c¢ms) system
shown in Fig. [2}

Mandelstam variables are represented as:
s=(;m +p2)2 = (ps +p4)2
t=(p1 —p3)® = (p2 — ps)? (5)
U= (pl - p4)2 = (p2 —p3)2,
where p; and p, are the four-momenta of the the two colliding protons, and p3 and

p4 are the four-momenta of the the two scattered protons, respectively.

Mandelstam variables satisfy the identity:

4
s~|—t+u:Z:7m2 (6)
=1



(a) s-channel. (b) t-channel. (¢) u-channel.

FIG. 2. Two-body exclusive scattering.

which is easily derived from definitions in Eq. together with energy-momentum
conservation: p; 4+ py = p3 + p4, which leads to the conclusion that only two of them
are independent. In general, s and ¢ are taken as the two independent Mandelstam
variables.

In proton-proton elastic scattering, two incoming protons collide and remain
intact after the collision. In the center of mass system, by definition we have
(assuming particles 1 and 2 are traveling along the z-axis with equal but opposite
momenta p; and py):

P1+p2 =0, (7)

where four-momenta of the particles can be written as:

b= (Elap) = (E170707pz>
b2 = (EQ’ _p) = (E27 Oa 07 _pz)
: , (8)
b3 = (E37 _p) = (E37pL7pz)
2 <E47 _p,) = <E47 —Pi, _plz)
Here p’ is the three-momentum of the scattering particles, p; = |p’|sinf is the

transverse two-vector momentum, p, = |p’|sinf and 6 is the scattering angle in the
cms coordinate system. The energies F,, F,, F3, F; and momentums p and p’ can
be expressed in terms of the Mandelstam variable s = (p; + p2)?, in the high-energy
limit (s — 00), as:

NG

E’17E2aE37E4 = 7 (9)



and

S
plp'| = ¥ (10)

In proton-proton elastic scattering all particles have the same mass, m and
the relations between cms variables and the Mandelstam invariants become much
simpler. With respect to the conservation of the four-momentum, the Mandelstam

variables can be expressed (in c¢ms system) as:

s = (p1 +p2)® = 4(p* +m?)
t = (p1 —p3)® = —2p°(1 —sinf) = —4p*sin®(0/2).

(11)

For very-forward scattering, the scattering angle 6 is very small. Therefore, one can

approximate the four-momentum transfer squared ¢ as:
t ~ —p*6°. (12)

Mandelstam variables are Lorentz scalars because they are dot products of
four-vectors. In the case of s — oo or s >> m? (like in this experiment), the

scattering angle in the cms system 6 can be expressed as:

2t
cos =1+ —. (13)
S
Another frequently used kinematic variable is the rapidity. This variable is defined

(for a particle of energy £ and momentum component along z-axis) as:

11 E+p.
=—1In .
y 2 E—p,

(14)

For massless particles (E ~ |p|) rapidity is directly related to the scattering angle 6

(specifying the direction of motion with respect to the z — azis):

1 14 cos 0 0
=—In—— =—In tan— 15
YoM T Teos 6 ) (15)
which is exactly the definition of pseudorapidity:
0
= Y|m=o = —In tan 3" (16)

The values of the pseudorapidity for the cases of elastic scattering, single diffraction

and double diffraction processes is shown in Fig.
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2.1.3 SCATTERING AMPLITUDE @, s), DIFFERENTIAL
CROSS-SECTION le_i AND FORWARD SCATTERING PARAMETERS
B, Py Otot

The differential cross-section is equal to the square of the scattering amplitude
[0, s): ;
o 2
= — 0 17
e =1f s, (7)
where dQ = dpd(cos ) = 2md(cos ) is the element of the solid angle of the scattered

particle, independent of the azimuthal angle. By using this relation, the differential

cross-section can be expressed in terms of the Mandelstam variable ¢ as:

do ds) do dcosB do
PR R ot (18)

By differentiating Eq. (L1]), with respect to sin§ we get:

dt
= 2p? 19
dcosf P (19)

and therefore, with respect to Eq. ,

do mwdo w 9

—=—=—=—|f(0 . 20

= L= S 0.s) (20)
With respect to the optical theorem [19], an invariant scattering amplitude is now

introduced:

F= gf(e, ). (21)

The optical theorem relates the total cross-section to the imaginary part of the elastic

scattering amplitude f.;(t = 0) in the case of very forward scattering as:

Otot = 4?Whnfel (t=0), (22)
where p is the center of mass three momentum of the incident particle. The
optical theorem provides a relation between the total cross-section oy, the forward
differential cross-section, do/dt (t = 0) and the ratio between the real to the
imaginary part of the scattering amplitude at ¢ = 0, p. The forward differential
cross-section is given by:

do

|, =17 = 0)F = Ref(t = 0)F + [Imf(t = 0) (23)
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and the real to the imaginary part of the scattering amplitude, p(t = 0), as:

_ Ref(s,t =0)
P Tmf(s,t =0)°

Therefore, using the optical theorem, Eq. , Eq. and Eq. , the forward

differential cross-section can be expressed as:

(24)

2

do (Ot 2
il = (762) 0+ ), (25)

Combining equations above, we get a relation between the forward differential

cross-section, parameter p and total cross-section:
do
dt
where 0;,(s) = 4y/7ImF(s,t = 0).

In order to express the differential elastic pp cross-section in terms of the

2

= (Fyae = e, (26)

forward scattering parameters o,,, p and B, both contributions from electromagnetic
(Coulomb) and hadronic (nuclear) interactions have to be considered. The differential
elastic cross-section is related to the invariant scattering amplitudes for the hadronic
and the Coulomb interactions according to:

dael
dt

However, due to the fact that F, and F),, may have a relative phase and if we limit

= |F, + F,]%. (27)

ourselves to the case of elastic scattering, the differential cross-section can be formally

represented as:
dO’el o 1

dt  167s2
where + depends on whether we have pp or pp collisions, respectively.

|Fetiod® 4 R, |7 (28)

F, can be precisely determined by using Quantum Electrodynamics (QED). From
QED, [20],

2
Fu(s,t) = —V/sGH(0) (29)
where Gg(t) is the electromagnetic form factor of the proton and is equal to
1
GE(t) = IEE (3())
1+ Az
with A% = 0.71 GeV?.
Starting from the relativistic corrected Rutherford scattering cross-section,
do, —aG2(t
Y — « : Ez(e) , (31)
dQern 2psin” 5
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with a ~ % as the fine structure constant, and using Eq. together with the

differential cross-section for Coulomb interaction in the form, Eq. ,

do,
dt

:w‘ _e

= (32)

On the other hand, there is no exact theoretical approach for the invariant
scattering amplitude of the hadronic interaction, F,. However, experiments have
shown that at low |¢|, this amplitude can be well approximated by an exponential
function [2I]. It can be extracted by using the ratio of the real-to-imaginary parts
of the scattering amplitude at ¢t = 0, Eq. and the optical theorem, Eq. , [19]
and it is given in it’s empirical form as:

s(p+1i)o e
F, = Lot . 33

By combining Egs. and 28] the differential elastic cross-section at small-|¢|

can be expressed in terms of the forward scattering parameters (o4, p, B) as:

doa _ o GHO) - GR)
a 1P t

_ Bt 1+ p? _
Otot€ 2 (p -+ aem¢) + T:O'?Ote B|t\' (34)

Equation represents the dependence of the differential elastic cross-section
on the four momentum transfer squared, . This dependence can be divided into
three regions: Coulomb, Coulomb-Nuclear Interference and hadronic region. The
Coulomb term dominates in the low-|t| region. In this region, do.;/dt is dominated
by a 1/]t|* dependence. As t increases, the relative contribution of the interference
term increases. The interference term is proportional to (p + @em@). The helicity
independent Coulomb phase § = @, ¢ is approximately [22]:

2
0= Oéem¢ = Qem <lnm - ’}/) y (35)

where the so called slope-B is the logarithmic derivative of the differential
cross-section at t = 0 and v = 0.5772 is Euler’s constant. Finally, in the higher-|¢|
region, the hadronic term dominates and the elastic differential cross-section falls
exponentially with |¢|.

The low-|t| region, the region where the Coulomb amplitude dominates, is the
region where a partial total cross-section in ¢ can be measured by comparing to

QED calculation. Total cross-sections are measured both at fixed-target accelerators
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and colliders. In the case of fixed-target accelerators, they are measured with
the transmission technique where they are determined from the attenuation of the
beam after it strikes the target. On the other hand, in colliders, there are two
approaches to the measurement of the total cross-section: Luminosity-independent
and Luminosity-dependent approach.

The total cross-section is related to the observed number of elastic and inelastic

events via Eq. :
Ne + Nin = L0tot, (36)

where N, and N;, are numbers of elastic and inelastic events, respectfully. The
luminosity £ is often not very well known. Therefore Eq. (36 can not be used for
the extraction of the total cross-section o4,. Instead, it can be related to the elastic
scattering rate at t = 0 by the use of Eq. via:

dNel
dt

o dael
T dt

t=0

:£1+P2 2

g Cior (37)

t=0
where p is given by Eq. and is small at high energies and does not need to be
precisely known. By the use of Eq. in Eq. and eliminating £ we get a
luminosity independent formula for the extraction of oyu:

167 (dNu/dt)|mo
1+P2 Nel+Nin ’

(38)

Otot =

where (dNg/dt)|;—o is extrapolated from the measured t-region of nuclear scattering

given by:
dNel o dNel

dt dt

e Bt (39)

t=0

In the luminosity dependent method, there is another very important factor, the
acceptance or efficiency factor, u, related to the design of the experimental apparatus.
Hence, the scattering rate, Eq. becomes:

dNel
dt

dael
=iy,

t=0

(40)

t=0
This method requires measuring scattering in the very-forward region, which is

experimentally very challenging. Therefore, the Roman Pot technique (see Section

has been very significant for these measurements in the very-forward direction.

The region where Coulomb and hadronic amplitudes have comparable magnitudes
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(CNI region, t ~ 1073 GeV?) is where the measurement of the p parameter can be

performed. The Coulomb and hadronic amplitudes are equal when:

8
it =38 (41)

Otot

At /s = 200 GeV and pp cross-section of o4y = 60 mb, —t,,4, &~ —2-1073 GeV?/c?
and corresponds to a scattering angle of 0.54 mrad. The measurement of the
p-parameter is related to the real part of the forward scattering amplitude. It is
specially related to the energy dependence of the total cross-section which is presented
later [5].

Lastly, the t-region where the hadronic amplitude dominates is the region suitable
for the extraction of the nuclear slope parameter B in a combined fit to the differential

cross-section.
2.2 REGGE THEORY AND THE POMERON

In quantum physics, Regge theory [23] is the study of the analytic properties
of scattering as a function of angular momentum which is not restricted to be
an integer value, but instead, it is allowed to take any continuous complex value.
Mathematically, it is possible to treat angular momentum as a continuous complex
variable and interactions in terms of partial wave amplitudes (an expansion in
terms of analytical functions of continuous complex angular momentum variable).
Such amplitudes exhibit simple poles, often called Regge poles, in the complex
angular momentum plane at positions that correspond to particles of definite
angular momentum, tracing out a Regge trajectory, which may lead to s-channel
resonances. Each pole contributes to the scattering amplitude a term which behaves
asymptotically as:

A(s,t) ~ 5D (s = oo, t — fixed). (42)

Thus the leading singularity (i.e. with the largest real part) in the t-channel
determines the asymptotic behavior of the scattering amplitude in the s-channel.
Therefore, one very important application of Regge theory is that Regge poles in the
t-channel can be used to predict the form of the amplitude in a high energy, low |¢|,
two-body s-channel ractions. When applied to the strong interaction, Regge theory
provides the only general explanation of the energy behavior of two-body inelastic
cross-sections.

Regge theory belongs to the class of so-called t-channel models. These models
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describe hadronic processes in terms of the t-channel exchange of “something”. In
the simplest version of t-channel models, this “something” is a (virtual) particle. Due
to this, nuclear forces are usually attributed to the exchange of mesons (7, p etc.),
analogous to the exchange of virtual photons in electro-magnetic interactions of two
electrons. However, this becomes inapplicable at high energies due to the violation of
the Froissart-Martin bound, i.e. violation of unitarity. Regge theory overcomes this
problem by preserving the idea of the t-channel exchange, but describing the strong
force not as the exchange of particles with definite spin, but rather to the exchange
of a Regge trajectory. The large s-limit of hadronic processes is determined by the
exchange of one or more Regge trajectories in the t-channel. In terms of particle
physics language, Regge trajectories are often called Reggeons.

Exchanging Reggeons instead of particles leads to scattering amplitudes of the
type in Eq. (42)), but without violation of the Froissart-Martin bound when a(0) < 1.

Pomeranchuk (1958) [24] predicted that total cross-sections would approach
a constant asymptotic limit. The Regge trajectory whose exchange ensures this
behavior became known as the Pomeron. It is generally supposed that in terms of
QCD, the Pomeron represents multi-gluon exchange. This very complicated Regge
trajectory is found to be responsible for the interactions at high energies and small

1]
2.2.1 REGGE TRAJECTORY

In a two-body scattering process in the t-channel, 1 + 2 — 3 + 4, the scattering
amplitude, as a function of s and ¢, can be expanded in terms of Legendre polynomials,
P,(sin0) as:

A1+24)3+4 S, t Z 2l ‘I— Pl(Sln 0) (43)
1=0
where 4;(s) are the partial wave amplitudes. Using Eq. (13), at low-|¢| the previous

equation becomes:

(20 + 1) Ai(s)Py(1 + 2t) (44)

Mg

Aia34a(s,t) =
1=0

The corresponding equation in the s-channel, 1 + 2 — 3 + 4, obtained by
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interchanging s and ¢ is given by:

oo

2s
A1+2_>3+4 S, t Z 2l +1 A[ P[(l + ; ) (45)

=0

As previously mentioned, the Regge pole idea is based on the study of the analytic
properties of A;(s) and allowing the angular momentum [ to become a continuous
and complex variable, «, on which the amplitude A,(s) depends: A;(s) — A(q,s).
Instead of studying the high energy scattering amplitude at finite momentum transfer
in the s-channel, Regge studied the low scattering amplitude at large momentum
transfer squared in the t-channel. The crucial step that enables this is the fact that
the angular momentum and the scattering angle 6 are conjugate to each other.

If we assume that in the complex angular momentum plane (a-plane) an analytical
function A(a, s) exists, where A(a,s) = A;(s) when [ = 0,1,2,3..., then according
to the Cauchy residue theorem, the integration has a singularity if the plane is inside

the closed curve.

R ke e e o bt

FIG. 3. Sommerfeld-Watson integration contour representation of the scattering

amplitude.
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By use of the Sommerfeld-Watson transformation [25], the wave expansion from
the previous equation may be rewritten in the form of a contour integral in the

complex angular momentum plane to give:

A(s, 1) = % ]{ do(20 + 1) ;?é?;i))za(a, 1+ Qt—s) (46)
C

where the contour C' surrounds the positive real axis, as shown in the Fig. Bl The
function A(c, s) is an analytical continuation of the partial wave amplitudes A,(s).
The denominator sin(r«) vanishes for integer [ when « = [, giving rise to poles called
Regge poles. If we set a = [+ 6 and take 6 — 0, the residue from the term 1/ sin(ma),
according to the Cauchy residue theorem, yields (—1)!. Therefore, the integral leads
back to summation from Eq. (45]).

The amplitude A(a,t) is unique when A(a,t) < e as |a] — oo [26].
Unfortunately, there are contributions to the partial wave amplitudes which alternate
in sign (i.e. are proportional to (—1)). Since the required inequality is violated along
the imaginary axis, it is necessary to introduce two analytic functions A+ («, t) and
AV (a,t). Therefore, Eq. becomes:

A(s,t) = ifdaw > wmn)(a,w(a, 1+ ?) (47)

2i J sin(ma) = 2

where AV (a,t) and AY(a,t) are called even- and odd-signature partial wave
functions and 1 = +1 is the signature of that partial wave.

If only simple poles exist (i.e.A(a, 1)), the contour C' can be deformed into contour
C" according to [27], which runs parallel to the imaginary axis with Re(a) = —1/2

and closes at infinity. Therefore:

1 .
—5+too

A(s, t) :2%, / da[w 3 MA(”)(a,t)P<a,1+?>}

sin(ra) 4 2
~hios "*ﬂ (48)

n+emm® B, (1) s
T Z Z 2 sin(may, (1)) P(an" (), 1+ 7)

n==x1 ny

The simple poles ay, (t) are called even- and odd-signature Regge poles, (n £ 1
respectfully) and 3, (t) are the residues of the poles, multiplied by (o, (t) + 1).
In order to isolate the high energy behavior of the scattering amplitude in the

Regge region, we investigate the asymptotic behavior of Legendre polynomials by
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using the crossing symmetry and deforming the contour. In the region of our interest
(s >>t), Legendre polynomials are dominated by the leading term:

A1+ ) = g () 2

where I'(x) is the Fuler gamma function. In this limit, the contribution to the right
side of Eq. along the contour C” vanishes as s — 00, so it can be neglected.
Thus if we take the distribution from the dominant Regge pole, which has the largest

value of the real part of a,, (t) we get:

5—+00 (7] + e—iwa)

A(s,t) "= 5 B(t)s*®, (50)

where «(t) is the position of the leading Regge pole at some value ¢ and with signature
1. The factors depending on t but not on s have been absorbed into the function
B(t). Last equation represents the explicit dependence of the high energy amplitude
in the s-channel on the Regge poles in the t-channel. The amplitude is a sum of
powers of s, with exponents equal to the location of Regge poles «,,.

In the t-channel process, with positive ¢, the amplitude has poles which
correspond to the exchange of physical particles of mass m; and spin J;, where
a(m?) = J;. By plotting the spins of low lying mesons against mass squared, Chew
and Frautschi [I6] noticed that they lie in a straight line. These straight lines are

called Regge trajectories (see Fig. |d]). The Regge trajectories are parameterized as:
a(t) = a(0) + a't, (51)

where o/ represents the slope of the Regge trajectory with conventional average value
of o/ ~ 1.

With respect to Eq. , the asymptotic s-dependence of the differential
cross-section is given by:

d_g x 8(2a(0)+2a’t—2)' (52)

dt
The amplitude from Eq. can be viewed as the exchange of an object with

complex angular momentum «a(t). Although it can’t represent a regular particle (due
to non integer or half integer angular momentum and dependence on t ), it can be
viewed as the effective exchange of a whole series of particles lying on the same Regge

trajectory a(t). This is called the exchange of a Reggeon.
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FIG. 4. The Chew-Frautschi plot for mesons, «(t) vs mass squared or ¢ [GeV?].

Regge trajectories lie in a straight line.

2.2.2 THE POMERON

The Pomeron as a Regge trajectory

Pomeranchuk [24] showed that under general assumptions, any scattering process
in which charge is exchanged has a cross-section that vanishes asymptotically.
Following his assumption, Foldy and Piers [28] proved that this particular scattering
process must be dominated by the exchange of quantum numbers of the vacuum if
its cross-section does not fall with the increase of s.

Using the intercept of the Regge trajectory, which dominates a particular
scattering process, together with the optical theorem from Eq. , we obtain the

asymptotic behavior of the total cross-section of that process:
Otot ™~ ImA1+2~>3+4(S7t = 0) ~ SQ(O)A? (53)

where « is the leading trajectory which can be exchanged in elastic scattering. At
high energy all total cross-sections are nearly constant with energy, which in terms

of the equation above implies that «(0) ~ 1. However, this is not possible for meson
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trajectories, which have a & 1/2, nor of any other presently known trajectories. The
trajectory with «(0) ~ 1 is called the Pomeron, after I. Ya. Pomeranchuk.

It has been proven experimentally that the total cross-section does not vanish
asymptotically, but slowly rises with the increase of s (when s reaches the values
beyond /s = 200GeV). If this rise is attributed to the exchange of a single Regge
pole, then the intercept of this Reggeon must have «(0) > 1 and carrying the quantum
numbers of the vacuum.

The precise nature of the Pomeron is still obscure. We generally refer to it as a
pole. However, it is important to keep in mind that the Pomeron may be a much
more complex object and empirical construct which describes the diffractive nature
of elastic scattering and only simulates the properties of a pole at present.

The Pomeron trajectory has the internal quantum numbers of the vacuum, the
isospin, strangeness and baryon number are all zero: I = S = B = (0. This trajectory
is taken to represent the exchange of a virtual particle called the Pomeron. Particles
with the quantum numbers of the vacuum are difficult to detect, but such particles

can exist in QCD as bound states of gluons with ap(t =0) = 1.
2.2.3 THE ODDERON

Another Regge trajectory which may play a significant role in high energy
scattering is the so-called Odderon [29], [30] and [31]. The Odderon is the C' =
P = —1 partner of the Pomeron. Presently there is no evidence from experimental
data of the existence of the Odderon at low-|t|. Its existence would entail differences

between the pp and pp asymptotic scattering amplitudes and cross-sections.

2.3 PHENOMENOLOGICAL MODELS OF pp AND pp ELASTIC
SCATTERING

In order to understand and interpret an increasing number of experimental data
of the diffractive process at low-|t|, several phenomenological models have been
developed. Regge approach, described briefly in the previous section, tells us that
the exchange of t-channel reggeons (with the Pomeron as the leading singularity),
determines the asymptotic behavior of the cross-sections in the direct s-channel [5].
Other available phenomenological models, that are going to be explained in this
section, have been successful, both quantitatively and qualitatively, in the description

of various features of the diffraction process, i.e. cross-section energy dependence,
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the diffractive slope and diffractive minima in the experimental data, p-parameter
etc.

In general, the phenomenological models can be divided into two groups, t-channel
and s-channel models. The Regge model (see Section , is a prototype of the
so-called t-channel models and the optical models, or in other words eikonal models,
belong to the class of so-called s-channel models. Both approaches are vastly used in
the phenomenological description of the data and both have merits and shortcomings.
None, so far, has been able to combine and unify various qualities of these two
approaches. Many attempts have been made to construct channel independent
model, but none with success.

This section is dedicated to the conceptual reviews of the traditional
phenomenological models. Some of these phenomenological models are: Geometrical
(Optical) models, proposed by Yang et al [32], [33], and Cheng et al. [2], the Impact
Picture Model by Bourrely, Soffer and Wu [34], [35], [36], and Multiple Exchange
Model by Donnachie and Landshoff [37], [38], [39].

2.3.1 THE GEOMETRICAL MODEL

The geometrical model is based on the idea of diffraction phenomena, borrowed
from optics. Although two fields appear distant from each other, the analogy
between optical and quantum mechanical diffraction is complete in the case of elastic
scattering, where the internal structure of the interacting particles does not come into
play. Similarities and differences between optical and hadronic diffraction are nicely
presented in [5].

Yang et al. [40], [41], [42], [43], use a geometrical model to predict the existence of
many diffraction dips in high energy hadron-hadron elastic scattering. In their model,
the cross-sections are written following the eikonal formalism [5]. The starting point
is the remark that high energy scattering is the shadow of absorption. Accordingly,
the interacting hadrons are viewed as extended objects made of hadronic matter
flying through each other, Fig. [5] At each point, the interaction is proportional
to the local density of hadronic matter, assumed to have a distribution similar to the
electric charge distribution [5]. The opacity is taken to be real so that the amplitude

is purely imaginary. It is factorized as:

Q(s,b) = K(s)D(b), (54)
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FIG. 5. Two hadrons colliding, at an impact parameter b (not to be confused with
forward slope B(s,t = 0)). Due to their, near the speed of light velocity, the hadrons
are contracted to thin disks. An analysis of the proton-proton cross-section suggests

that high-energy protons are black disks.

where K (s) is the energy-dependent quantity and a free parameter of the model,
fitted to the o4, data and D(b) is related to the form factors of the colliding particles

and is obtained as follows:
D(b) / YT (b — b) Ty (b), (55)

where T'(b) is related to the charge density p(b,z) of the hadron by T(b) =
f_Jr;o dzp(b, z) and A and B are the two hadrons. By introducing the form factors of
A and B hadrons:

Gap(q®) = /dzb@_iq'bTA,B(b% (56)

D(b), which depends only on b = |b| is given by:

Do) = / %6_“"”%(&)%(&)- (57)

An indication of the geometrical model of Yang et al. [44] is the appearance of
the diffraction pattern in the elastic cross-section with secondary maximum and a
sharp minimum. The |t| value of the minimum is proportional to 1/, and the

forward slope B(s,t = 0) to oy This model also provides a connection between
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Otot, the ratio o¢ /0, and the value of do/dt at the second maximum, supported by
the experimental data. However, the question that has not been answered by the

geometrical approach is the s-dependence of the observables.
2.3.2 THE IMPACT PICTURE MODEL

An attempt to incorporate s-dependence derived from a perturbative
field-calculation into the geometrical model was made by Bourrely, Soffer and Wu
[35], [36], [45]. In their impact picture model, the opacity is of the same form as in
Eq. (54), apart from an additive subleading term, and the function K (s) is taken
from [46], [47], [48]. The asymptotic behavior of the scattering amplitude they found,
is:

s+ (Ins)=%/2, (58)

where € is a positive quantity which depends on the theoretical coupling constant.
K (s) has the crossing symmetric form of:

a a

U
(Ins)? ~ (Inu)b’

K(s) = (59)

where a and b are constants and u is the third Mandelstam variable. The fact that
a and b are constants implies that the Pomeron is a fixed Regge cut rather than a
Regge pole. D(b) is the same as given in Eq. . The impact picture model predicts
that asymptotically o, 0 and B(s,t = 0) should all increase as In%s and that the
ratio ¢ /oy should approach 1/2, which is in agreement with experimental data. A
schematic representation of the expanding proton in the impact picture is described
with almost completely absorbing (ie. black) proton core which has a radius that
grows with Ins and the peripheral region, which is partially absorbing (i.e. gray) and
has a width independent of s (see Fig. @ A complete account of this theory can be
found in [2].

2.3.3 MULTIPLE EXCHANGE MODEL

Processes at high energies and low-|t| are believed to be controlled by single
Pomeron exchange [38]. The Pomeron couples to the quarks like the photon with
more or less constant p-coupling but with a Regge signature factor which gives it
an even C-parity, as observed by Landshoff and Polkinghorne [49]. The multiple
exchange model for high energy scattering, proposed by Donnachie and Landshoff
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FIG. 6. Schematic representation of expanding proton [2].

[37], is based on the idea that pp and pp scattering at high-|t| proceeds via the
exchange of three gluons which couple to the proton or antiproton valence quarks,
Fig. [l The amplitude of this process has opposite signs for pp and pp, which also
explains the difference between pp and pp data in the dip-shoulder region. This model

predicts no secondary minima in pp at high-|¢|.
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FIG. 7. The triple-gluon exchange in pp and pp elastic scattering.
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Donnachie and Landshoff use six types of exchanges in their model:
Single- Pomeron (P) exchange, double- Pomeron (PP) exchange, and triple- Pomeron
(PPP) exchange. Then, Reggeon (R) exchange, Reggeon-Pomeron (RP) exchange,
triple-gluon (ggg) and exchange of a Pomeron plus two gluons (Pgg). For details on

these exchange mechanisms see Ref. [37].
2.4 OVERVIEW OF pp AND pp ELASTIC SCATTERING

Elastic scattering has been studied in pp and pp collisions at the CERN
Intersecting Storage Ring (ISR), Tevatron at FNAL and RHIC at BNL, see Table[l]
At CERN’s ISR, the highest c¢ms energy in pp collisions is at /s = 62.8 GeV with
unpolarized beams and at y/s = 20 GeV with polarized beams. The pp collisions have
been studied at /s = 53 GeV, also at the CERN ISR, and at /s = 1.8 TeV at the
Tevatron (FNAL). On the other side, RHIC (BNL) provides a unique opportunity
to cover a previously unexplored cms energy range (50 — 500 GeV) for the study of

polarized pp collisions.

TABLE 1. Overview of pp and pp elastic scattering experiments.

Collider Type Center of Mass
Accelerator of Energy
Facility Experiment Vs
ISR at CERN pp collisions (unpolarized) 62.8 GeV
ISR at CERN pp collisions (polarized) 20 GeV
ISR at CERN pp collisions 53 GeV

Tevatron at FNAL pp collisions 1.8 TeV

RHIC at BNL pp collisions (polarized) 50 — 500 GeV
LHC at CERN  pp collisions (unpolarized) 7—14 TeV

Physics motivation behind all these experiments is the measurement of both

spin-averaged and spin-dependent observables in elastic and inelastic processes:

- Spin-averaged Observables in Elastic Scattering: The differential elastic
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cross-section do, /dt, the total cross-section o4, the nuclear slope parameter B

and the ratio of the real to imaginary part of the forward scattering amplitude

p-

- Spin-dependent Observables in Elastic Scattering: The analyzing power
Ap, the double spin correlation parameters Ayy, Ass and Apy, (with transverse
and longitudinal beam polarization) and the difference in the total cross-section

as a function of initial transverse spin states Aoy = azjt — aﬂt.

2.4.1 ELASTIC CROSS-SECTIONS

Elastic events at hadron colliders are identified by the detection of two,
back-to-back particles in the final state. The difficulty is that scattering angles,
of the order of fractions of mrad, get smaller and smaller with the increase of energy.
Hence, detectors need to be placed very close to the beam, inside the beam pipeline.
In order to achieve this, a device known as “Roman pot” is used [50]. The detectors
are placed into the Roman pots which are normally left in a retracted position so that
the beam, when injected, circulates freely inside the beam vacuum pipeline. When
the desired energy has been achieved and the beam is stable, the Roman pots are
slid into their operational position until the inner detectors are just a few millimeters
from the beam. The detectors which are inserted into Roman pots are designed to
accept a high particle rate and have good spatial resolution (about 100um). The
types of detectors which are usually inserted into Roman pots are drift chambers,
hodoscopes, scintillating fibers or silicon micro-strip detectors (see Section .

Hadron collider experiments usually require the highest possible luminosity and
therefore the transverse size of the beam is reduced as much as possible at the
interaction point. In this case, the beam size at the detection point for elastically
scattered protons is large, the angular beam divergence of the beam is increased
and a large fraction of elastically scattered particles are not accessible for detection.
Contrary to this, in the case of elastic scattering experiments, the beam size at
the interaction point is made relatively large and, consequently, the luminosity is
reduced. This is not a problem for elastic scattering experiments since the differential
cross-section is large at low-|t|. The elastically scattered protons, however, are now
well separated from the narrow beam at the detection point.

The ratio of integrated elastic to the total cross-section is known to decrease at
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low energies and reach a constant value. The measurements for pp are quite precise,
contrary to pp data, which are not as accurate, but compatible with the pp data
within errors. This constancy is a prediction of the geometrical model (see Section
2.3.1). However, at higher energies, the ratio o, /o, increases with energy (Fig. ,
which is not only a strong argument against this model, but can be also be taken as
evidence that hadrons become more and more opaque with the increase of energy.
The growth of 0. /04, With energy is in agreement with various models such as Cheng
and Wu [2] and Bourelly, Soffer and Wu (see Section [2.3.2)).
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FIG. 8. The ratio of 0. /0 as a function of the y/s. The dashed line shows the
ratio of the o.(s) and oy (s) fits from [3].

2.4.2 THE TOTAL CROSS-SECTION

The exact growth of the total cross-sections with energy is a puzzle that many
tried to resolve. It has been present for nearly forty years now. Initially, it was
believed that the total cross-sections would become asymptotically constant. This
turned out not to be the case and the very first evidence of total cross-section growth

with energy came from preliminary results of the Serpukov accelerator on 7¥p and
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K*p scattering at p;, ~ 60 GeV [5]. This observation was confirmed for both, pp
and pp, total cross-sections by the ISR and FNAL experiments [51], [52]. These data
were compatible with the asymptotic equality of oy, (pp) and o4 (pp) predicted by the
Pomeranchuk theorem, [24]. The growth of o, (pp) became macroscopically visible
from SPS data at /s = 0.546 TeV and /s = 0.90 TeV, [53], [54], [55], and with the
Tevatron data at /s = 1.8 TeV, [56], [57], [58]. The pp and pp total cross-section
data are presented in Fig. @ together with a fit to a In”s, [5]. This growth is discussed
in Section [2.3| as evidence that the proton becomes larger and blacker as seen by an
incoming hadron of increasing energy.

The exact growth of oy (pp) and oy (pp) with energy is both delicate and
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FIG. 9. Total pp and pp cross-sections fitted to a In”s behavior [3], [4].

unresolved. An approximate In”s (y = 2.2 + 0.3) is suggested, which saturates the
energy growth permitters by the Froisart-Martin bound, [5]. Phenomenologically,
the uncertainties of the data do not dismiss the possibility of an Ins growth (note the
discrepancy between the two Tevatron measurements at /s = 1.8 TeV). Cosmic ray
data do not lead to a conclusion regarding the increase [59], [60] and the E710 result

tends to favor a Ins increase, while CDF result favors In%s dependence. The TOTEM
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collaboration at LHC measurements of o;,; at /s =7 TeV [3] and /s = 8 TeV [4],
are both in good agreement with the extrapolation of the lower energy measurements.
At /s = 14 TeV at the LHC, the difference between the Ins and In®s fits is about
15 mb.

The available data for o4, (s) for both pp and pp can also be fitted successfully by a
mild power dependence [9]. However, to distinguish between power and In?s growths
one needs to measure at very high energies, which is hard to achieve. Similarly, the
combination of a Ins+C' term is also indistinguishable from a combination containing
a In%s term. From the physics point of view, any power behavior, taken at face value,
would violate unitary and, consequently, should be modified. On the other hand, no
such argument exists against any In” s behavior as long as v < 2.

According to the Pomeranchuk theorem, [24], o4, (pp) and o0 (pp) become equal
at asymptotic energies (present data can be used if they were already assymptotic).
The power law fit to the difference between oy.¢(pp) and o0 (pp) gives Aoy ~ 5705,
which is in agreement with the theoretical predictions by Regge theory. In fact, the
Pomeron contributions cancel out in the oy, (pp) and o, (pp) difference an the Aoy
is dominated by a secondary Reggeon trajectory with an intercept close to 1/2.

However, this is not quite so conclusive since maximum energies obtained for both
owot(pp) and oy (pp) data are in the ISR range (/s ~ 62 GeV). Unfortunately, at
the time being, there are no plans for extending this energy range at LHC or RHIC.

2.4.3 THE REAL PART OF THE FORWARD ELASTIC AMPLITUDE

As described in section [2.1.3] the optical theorem gives the relation between total
cross-section and imaginary part of the forward scattering amplitude [5]. It tells us
that the imaginary part of the forward amplitude incases with energy, Eq. , while
no such constraint exists for the real part. The measurement of the real part of the
forward scattering amplitude, which in turn is complementary to the measurement
of the total cross-section, is directly related to the measurement of the p-parameter.
In addition, p is a very sensitive indicator of several theoretical properties.

The p dependence on energy is shown on Fig. [I0] In the region where the total
cross-section is first decreasing with energy and then rising, p, which is initially
negative, will rise, going through zero when the cross-section has a minimum and

becoming positive at high energy.
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FIG. 10. The p parameter for pp (black circles) and pp (white circles) as a function of
the energy. The solid line represents the dispersion relation fit with the 1o uncertainty

region determined by the dashed lines [5].

Experimentally, the measurement of p(s) is performed by observing the
interference of the hadronic amplitude Fj}, parameterized as in Eq. in the
low-|t| region, with the known Coulomb amplitude which is given with Eq. (29).
Coulomb scattering becomes dominant at low-|¢|, and the two amplitudes become
comparable, Eq. . At present energies, ty ~ 1072 GeV?, which is the region where
the measurement of the real part of the amplitude is possible. At this || range, |F},|?
can be neglected and the interference term is proportional to (p£aen¢). The relative
phase was first calculated by Bethe (1958) in a potential scattering model [61], and
later investigated by many authors [62], [63].

2.4.4 THE FORWARD PEAK

The high energy ¢-distribution shows a pronounced diffraction peak (forward
peak). Theory and data show that the slope of the diffraction peak depends on
s. In natural units, the slope of a diffraction peak has units of length? which
suggests that there is a relation between this quantity and the hadron size or,

equivalently, the total cross-section, with the expectation to with grow energy as
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(Ins)?. And indeed, the data show this growth of B with energy, Fig. [L1] The
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FIG. 11. Current World data on the nuclear slope of the forward peak B. A growth

of B is observed with the increase of cms energy [5].

solid line in Fig. represents the Regge prediction of the growth of B(s). In the
high-s region, it is represented as a straight line with a slope given by the Pomeron
slope B(s) = By + 2a/p Ins. From this figure it can be estimated that the value of
op =~ 0.25 GeV~2, which is in a good agreement with other estimates.

The only direct high energy comparison between pp and pp slopes in the diffraction
region is at ISR energies [64]. The ratio B(pp)/B(pp) decreases towards 1 as the
energy increases and reaches unity at approximately 62 GeV. The overall diffraction
peak at [t] < 0.5 GeV? is not described by simple exponential. For [¢t| > 0.02 GeV?
the slope B(s) is found to decrease which is visible in both ISA [65] and SPS [53],
[54]. At 0.2 < [t| < 0.3 GeV? the slope is below |¢| ~ 0 for about two units of GeV 2.
Contrary to this B(s) behavior, the Tevatron data [56], [57] show no evidence of B

decreasing with |t|. However, this decrease is accounted for by various models such

as Bourely, Soffer and Wu (see Section [2.3.2)), [36], [66], [67].
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CHAPTER 3

EXPERIMENT

3.1 RELATIVISTIC HEAVY ION COLLIDER (RHIC)

The Relativistic Heavy Ion Collider (RHIC) is an accelerator facility at the
Brookhaven National Lab (BNL) on Long Island, New York. Its main goal is to
provide collisions of heavy ions (i.e.!”Au) and lighter ions all the way to protons
(including polarized protons) at energies of up to 100 GeV /¢ per beam for the heavy
ions, and up to 250 GeV/c for unpolarized or polarized proton beams [68]. The
complete RHIC facility is a complex set of interconnected accelerators (see Fig. .
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FIG. 12. Overall layout of the Brookhaven National Laboratory accelerator complex.
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1. The Linear Accelerator (Linac): For collision of proton beams at RHIC,
protons are supplied by the 200 MeV /c Linac. Protons from the Linac are then

transferred to the Booster Synchrotron.

2. The Booster synchrotron is a powerful circular accelerator that provides
the protons with more energy. The ions are accelerated to higher and higher
speeds, getting closer to the speed of light. The Booster synchrotron accelerates
protons to 1.5 MeV/c. The Booster then feeds the beam into the Alternating
Gradient Synchrotron (AGS).

3. Alternating Gradient Synchrotron: The AGS is filled with proton
bunches previously accelerated in the Booster. The bunches are then

accelerated further to 24 GeV/c.

4. RHIC: The RHIC is an intersection storage ring particle accelerator. It
consists of two independent concentric accelerator /storage quasi-circular rings
of superconducting magnets, each with a circumference of 3.8 km. One
ring is called the Blue Ring, where the beam moves in a clockwise direction
and the other one is known as the Yellow Ring, where the beam moves in
a counter-clockwise direction. The rings share a common horizontal plane
inside the tunnel, with each ring having an independent set of bending and
focusing magnets as well as radio frequency acceleration cavities. This allows
independent tuning of the magnetic fields in each ring which is required to
achieve equal rotation frequencies of the different particle/ion species in each
ring. In RHIC, the counter-rotating proton beams are accelerated up to an
energy of 250 GeV/c per beam and can be collided at six interaction regions

(IR). The IRs are spaced equidistant around the circumference, separated by

arc sections (Fig. [12).

Presently, there are two active experiments at RHIC positioned in the 6 o’clock and
8 o’clock IRs. One of those two experiments is the STAR experiment [69] (located at
the 6 o’clock IR of RHIC). The Physics With Tagged Forward Protons At The STAR
Detector experiment is part of the STAR experimental program [70].
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3.2 THE STAR DETECTOR

STAR [71] is one of the two presently active detectors, located at the 6 o’clock
interaction region. The physics motivation behind STAR is to investigate the
behavior of strongly interacting matter at high density and to search for the
signatures of quark-gluon plasma (QGP). STAR was designed for measurements of
hadron production over a large solid angle. It incorporates high precision tracking
systems for particle identification at the central rapidity region. It measures
many observables simultaneously in search of a possible phase transition from
hadronic matter to QGP and studies space-time evolution of the collision process in
ultra-relativistic heavy ion collisions. In addition, apart from its heavy ion program,
STAR has an active spin physics program oriented towards the study of the nucleon
spin structure and a program with tagged forward protons (see Section for the
study of the spin-dependent and spin-averaged observables in pp elastic scattering
and central production at very low-|t|. For the purpose of its program with forward
protons, STAR has an additional system of forward detectors called the Roman pots
(see Section [3.4).

The STAR detector with its subsystems (other than the Roman pot (RP)
subsystem) is shown in Fig. The entire detector is enclosed in a solenoidal
magnet that provides a uniform magnetic field of maximum value 0.5 T parallel to
the beam direction. This feature allows measurements of the momenta of charged
particles. At the heart of the STAR detector is the Time Projection Chamber
(TPC) which is used for charged particle tracking and particle identification.
The TPC covers a pseudo-rapidity range of |p| < 1.8 with complete azimuthal
coverage. In order to extend this coverage to the forward region, two Forward Time
Projection Chambers (FTPC) are installed which extend pseudo-rapidity coverage
to 2.5 < |n| < 4 on either side of the TPC in forward and backward rapidity,
also with full azimuthal coverage. A barrel Time-of-Flight (TOF) detector is also
installed in STAR and it consists of 120 trays covering the range of |n| < 0.9 in
full azimuthal coverage. The TOF trigger system has two Pseudo Vertex Position
Detectors (upVPD), each located 5.7 m away from the TPC center along the beam
line providing the start time information to it. The full Barrel Electro Magnetic
Calorimeter (BEMC) and End-cap Electromagnetic Calorimeter (EEMC) are used
for detection of charged particles covering |n| < 1 and 1 < || < 2 respectively.

Calorimeters include Shower-Maximum Detectors (SMD) for distinguishing between
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deposited energy from a single photon or from photon pairs arising from neutral
pion (m) or |n| meson decays. For detecting photons at forward rapidity, the Photon
Multiplicity Detector (PMD) is used. This detector covers a pseudo-rapidity range
—3.7 < n < —2.3 with full azimuthal coverage.
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FIG. 13. Cross-sectional view of the STAR detector.

As previously mentioned, the STAR detector has a set of Roman pot (RP)
detectors located in the very forward direction, about sixty meters away from the
IP. The Roman pots are used as a part of the STAR physics program with tagged

forward protons, explained in the following section.
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3.3 PHYSICS WITH TAGGED FORWARD PROTONS AT THE
STAR DETECTOR

“Physics With Tagged Forward Protons At The STAR Detector” experiment
(formerly known as the pp2pp experiment [70]) is designed to study elastic
proton-proton (pp) scattering at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory (BNL). One of the objectives of this experiment is
the study of differential cross-sections and polarization effects in pp elastic scattering
by using both unpolarized and polarized proton beams at all center of mass energies
available at RHIC, 50 < /s < 500 GeV, in the four momentum transfer squared
range of 0.003 < [t| < 0.03 (GeV/c)?®. With unpolarized proton beams, the focus of
this experiment is on the differential elastic cross-section together with the nuclear
slope parameter B of pp elastic scattering and their dependences on /s and t.
Moreover, the total elastic cross-section and the ratio of real to imaginary part of the
hadronic scattering amplitude, the parameter p, are of great interest and importance.

Elastic events are identified by detecting two, and only two, back-to-back
scattered particles in the final state. In the case of pp collisions, the two colliding
beams have the same energy and very small cross-section. The difficulty is that
the higher the energies of the incoming beams, the smaller the scattering angles so
there is a need for retractable detectors called Roman pots [50], which can reach the

positions very close to the beam inside the beam pipe.
3.4 ROMAN POT DETECTOR SYSTEM

Roman pots are cylindrical vessels that house the detector system isolating it from
the high vacuum of the accelerator beam pipe [50]. The name Roman was chosen
because this technique was first used by a CERN group from Rome in the early
1970s to study pp collisions at CERNSs intersecting storage rings (ISR). The pots are
connected to the vacuum chamber of the collider by bellows, which are compressed
as the pots are pushed towards the particles circulating inside the vacuum chamber.
In their retracted position, the Roman pots do not obstruct the beam, leaving the
aperture of the vacuum chamber free for the beams during their injection and ramp.
Once the beams are brought into collision, the Roman pots are moved inside the
beam pipe as close as a few mm to the beam, without disturbing the stability of
the circulating proton beams. Thus, the Roman pots are moved during operation,

approaching the detectors close to the beam and enabling detection of forward
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scattered particles, while the detectors remain isolated from the beam vacuum.

The windows of the Roman pots are made of stainless steel with a thickness of
300 pgm. The thin stainless steel minimizes the material through which the proton
passes, but must maintain its strength, preserving the beam pipe vacuum, in the
event the proton beam is accidentally dumped directly into the pot. As the interior
of the pot is at atmospheric pressure and the exterior is exposed directly to the beam

vacuum, the window frame serves to prevent the thin window from deforming into

the beam.
EV EH Top View WH WV X
AVl av/a)
<I\:
A gy - L o eangl (N
L=
—_ [AVA AA
- W/A\Y) DX STAR DX WAV N
Q3-Q1 DO DO Q1-Q3
| | |
\ \ \
-55.5m 0 55.5m
Side View y

EVU EHO WHO WVU
Ly
z

%
EVD EHI /VHI WVD
AN

Scattered
proton

FIG. 14. Roman Pot detector system layout [6].

The layout of the “pp2pp at STAR” experiment consists of a total of four

RP stations, two horizontal and two vertical RP stations [6]. These stations are
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symmetric with respect to the STAR interaction point (IP) and are positioned on
both sides of the STAR IP at 55.5 m and 58.5 m along the outgoing beam pipeline.
One station consists of two RPs on opposite sides of the beam (see Fig. Each of
the RPs in the system houses a single detector package which consists of four silicon
micro-strip detector layers (two X-view and two Y-view), one scintillator which is
connected to two photo multiplier tubes (PMTs), detector assembly structure and
temperature measuring system. Two of the silicon micro-strip detector layers (X-view
detectors) measure the xz-coordinate in horizontal RP stations and y-coordinate in
vertical RP stations. The other two silicon micro-strip layers (Y-view detectors)
measure the y-coordinate in horizontal RP stations and x-coordinate in vertical RP
stations. X-view detectors consist of 756 micro-strips and Y-view detectors have 504

active micro-strips.

Machined channel for close approach to beam

FIG. 15. Components of the “pp2pp at STAR” Roman pot detector system: Roman
pot housing.
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FIG. 16. Components of the “pp2pp at STAR” Roman pot detector system: Roman

pot detector station (vertical).

SVXIIE chips are used for the readout of the silicon micro-strip detectors [72].
Each SVXIIE chip reads signals from 128 strips (126 active) of the silicon micro-strip

detector. X-view detectors have six SVXIIE chips and Y-view detectors have four.
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FIG. 17. Components of the “pp2pp at STAR” Roman pot detector package: Roman
pot detector package assembly.

FIG. 18. Components of the “pp2pp at STAR” Roman pot detector package: Roman
pot detector package boards.
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3.5 SILICON MICRO-STRIP DETECTORS

Silicon micro-strip detectors have a special place in experimental particle physics
[7] for many reasons, especially due to the properties of the silicon material. The
relatively high density of silicon is one of the essential properties of this material that
allows highly precise position measurements if used for tracking detectors (even less
than 10 pm). Very good mechanical properties (i.e. elasticity), very well developed
manufacturing technology and affordability of silicon are the main reasons of their
wide spread use in various experiments.

The basic idea of silicon detectors is based on p-n junction diodes which are
made from a junction of p-type (positive-type) and n-type (negative-type) silicon.
A p-type junction is made by doping silicon crystals with boron (which has three
valence e~). p-type material has holes as its majority charge carriers. On the other
hand, n-type material is made by doping pure silicon crystals with phosphorus (five
valence e~), which leaves excess electrons in the material. Those electrons became
majority charge carriers of n-type material. The number of majority carriers in the
material, which is determined by doping concentration, determines the resistivity (or

conductivity) of the material [73].

3.5.1 PHYSICAL DESCRIPTION AND PROPERTIES OF SILICON
MICRO-STRIP DETECTORS

A silicon micro-strip detector is constructed by implementing thin strips of highly
doped p-type silicon over an n-type silicon wafer. The backplane of the wafer is made
of a thin layer of aluminum. This is done for protection and ensures good electrical
conductivity along the backplane. At the end of each silicon p-type micro-strip there
is an implanted resistor. The top surface of the silicon wafer is layered with a thin
layer of SiO, glass, which is an excellent insulator. Aluminum strips run above and
along the length of p-type micro-strips. Together they create a series of capacitors. A
silicon micro-strip detector cross-sectional view is shown in Fig.[19} Each Al strip is
connected to charge-integrating preamplifiers which are implemented in the SVXIIE
readout chips. A thin Al ring (a guard ring) surrounds all the strips in the detector
and is used to eliminate edge-related leakage current from the rest of the detector.

Key parameters of silicon micro-strip detectors are the spacing between two

consecutive micro-strips (strip pitch) and the detector capacitance. The pitch of the
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FIG. 19. Silicon micro-strip detector cross-sectional view [7].

micro-strip detectors in the “pp2pp at STAR” experiment is 100 pm [7]. With this
pitch, the spatial precision of these silicon micro-strip detectors is expected to reach
100/+/12um=~ 28.8 pm. 1/+/12 is the sigma of the uniform probability distribution.
This calculation is based upon the assumption that all of the charge created in the
vicinity of the strip is solely collected by that strip. In reality, however, this is not the
case and the charge sharing between two consecutive micro-strips is highly probable.

In the case of minimum ionizing particles, the number of created charges is, in
general, small so the space charge effects that tend to expand the charge cloud are
small as well. In this case, the charge cloud does not expand more than 1 pm.
On the other hand, in the case of highly ionizing particles, the number of charges
created is high, as are the space charge effects in the charge cloud. In this case, it
is expected that the charge drift effect is large, which makes charge sharing between
two consecutive micro-strips almost inevitable. However, by shortening of the drift
time this problem can be easily solved. This is accomplished by over-depleting the
detector and creating a smaller resistivity in the silicon bulk. Consequently, charge
diffusion effects in the “pp2pp at STAR” experiment can be neglected with high
confidence.

Sharing of the charge between two consecutive silicon micro-strips also depends
on the impact angles of ionizing particles and widths of the micro-strips. In our
experiment, due to very small scattering angles of the scattered particles of interest
(high energy protons), it is expected that their trajectories are almost perpendicular
to the silicon planes of the detectors. However, the micro-strips are still wide enough
so the charge sharing between two strips is still possible to occur. This effect is

carefully studied in Chapter [5.1.4 Charge sharing can be used to improve the
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position resolution of the detected particles by weighting the individual strip positions
with the collected charge by the strips.

The total detector capacitance depends on the thickness of the silicon bulk, the
thickness of the oxide layer and the dimension of the micro-strips (length, width).
The thickness of the silicon bulk in the “pp2pp at STAR” experiment is 400 pm,
thickness of the oxide layer is about 100 nm. The width of the p-type strips is 70
pm and the width of Al strips is 72 um. Therefore, the gap between two consecutive
strips is 30 pm. The length of the silicon strips is about 80 mm in Y-view detector.

This is summarized in Table 21

TABLE 2. Parameters and dimensions of the Si micro-strip detectors.

Strip width 70 um
Strip pitch (z-plane, center to center) 97.4 pm
Strip pitch (y-plane, center to center) 105 pm
Resolution = Strip pitch/y/12 ~ 29 um
SiO; layer 100 nm
pt width 70 pm
Al width 72 pm
Wafer thickness 400 pm
Clater 600 pF/um depletion
Cinterstrip 2 nF
Ceoupling ~ 2 nF

Two different capacitors, the capacitor formed by the n-type backplane and
p-type strip (Cyater) and the capacitor formed by p-type strip and Al strip (Ceoupling),
contribute to the total capacitance of the detector, see Fig. [I9] These two capacitors
are approximated to be in series, hence the overall detector capacitance can be
determined by their equivalent capacitor. Ceoupling is calculated to be about 2000 pF
and Cyafer about 1.7 pF which is rather small compared to Ceoupiing. Therefore, the

total detector capacitance will be mainly dominated by Cyager. In order to decouple
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neighboring strips from each other, Ceoupiing capacitance is required to be much larger
than the capacitance between two consecutive strips, Cinterstrip- 10 other words, the

bigger the Ceoupling capacitance, the better the charge induction in the Al strip.

3.5.2 PARTICLE DETECTION USING SILICON MICRO-STRIP
DETECTORS

As previously explained, when a charged particle passes through a thin silicon
layer, it looses energy through ionization. This energy loss can be described by the
Bethe-Bloch formula [74]. According to this formula, at relativistic energies, this loss
can be considered as constant. Therefore, the energy loss is approximately the same
for any particle with relativistic energies.

Energy loss (stopping power) in micro-strip detectors follows a Landau
distribution [74]. The most probable energy loss in a thin 400 pm layer of silicon is
about 118 keV. In silicon, it takes on average 3.6 eV to create one electron-hole pair.
Therefore, a high energy proton will create around 8,200 electron-hole pairs per 100
pm of silicon. The charge equivalent to this is about 1.31 fC which gives around 5
fC signal to be collected by p-type micro-strips, as shown in Fig[20l This will be
studied in detail in Chapter [5]

N- type silicon

FIG. 20. Signal creation and collection in silicon micro-strip detector [7].
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3.5.3 PROBLEMS AND DRAWBACKS OF SILICON MICRO-STRIP
DETECTORS

A few problems can be encountered when silicon micro-strip detectors are used.
The first among them is damage due to radiation. This is a general problem with all
silicon detectors. High radiation can cause displacement of atoms at their lattice site
which changes doping concentration in the silicon bulk. This leads to an increasing
leakage current. Also, it can cause surface damage due to charge build up at
the surface layers which can cause an increase of the surface leakage current and
effect inter-strip isolation. In addition, it can cause ineffective biasing and therefore,
non-uniform electric fields inside the bulk.

The second drawback with silicon micro-strip detectors is an unreliable oxide
layer. This oxide layer can break if the voltage difference applied across it is larger
than 10 V. However, this is not a problem for our silicon micro-strip detectors.

Inter-strip capacitance is, also, one of the problems that can occur. As previously
stated, the coupling capacitance has to be greater than the inter-strip capacitance.
If this is not the case, fake signals could be observed in the neighboring strips of the
hit micro-strip. Our system is checked for this and no such effect was detected.

The external electric field of the accelerator environment can cause charge
induction on the Al strips leading to surface charge currents. External magnetic fields
can cause unexpected deflections in the trajectory of the particle passing through the
silicon detector, disturbing the spatial measurement precision. Because of this, the
detectors should be protected from external fields.

The silicon detectors used in the “pp2pp at STAR” experiment are designed with
a small cutting edge of 500 um. This is the distance to the first strip closest to the
beam, and it is minimized for detecting particles with as small as possible scattering
angles. However, the cutting edge of the silicon can be a source of leakage current,
which can affect nearby strips. To prevent this effect a guard /bias ring is used around
the strips, to serve as a leakage current drain and minimize the inactive area. More
details on drawbacks of silicon micro-strip detectors can be found in [7], [74], and
[73].



46

3.6 THE READOUT SYSTEM

The readout system of the silicon micro-strip detectors consists of 160 SVXIIE
chips. The SVXIIE chip is a 128 channel device, developed by a collaboration of
engineers at FNAL and LBNL [72]. The chip was designed to meet the requirements
for both CDF and DO experiments at FNAL. The SVXIIE chip features a 32-cell
analog pipeline, programmable test patterns, downloadable settings for ADC ramp,
pedestal, bandwidth and polarity [7]. The SVXII chip is designed for daisy chained
operation with silicon strip detectors, to reduce the number of control and readout
connections in a multi-chip system [7]. The major characteristics and features
SVXIIE chip are:

- 128 channels per chip.

- Designed to accommodate beam crossing time from 132 ns to 396 ns.
- Separate acquisition and readout cycles.

- Double correlated sampling.

- Large dynamic range.

- Programmable depth analog pipeline (32 cell maximum depth per channel).
- Digitization of analog signals to 8 bits of resolution.

- Data sparsification (zero suppression).

- Neighbor channel readout selection.

- Low noise (S/N=10 to 20:1).

- Low power dissipation (approximately 350 mW /chip).

- Operation compatible with doubled sided AC coupled detectors.

- Separate test input for each channel.

- Daisy chain operation capability.

- Parallel bus data readout.
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- Numerous programmable internal registers (chip ID, preamp risetime, threshold

level, etc.).

For details on design and operation of SVXIIE chips refer to [7].
3.7 MEASUREMENT TECHNIQUE

The incoming beams collide at the interaction region in a local coordinate system
at a vertical distance x and y from the reference orbit and are scattered with polar
angle . The common nomenclature is that the z-axis has been chosen to be the
beam axis (usually denoted as the s - axis), while the remaining = and y axes are
transverse to the beam (in the following text denoted as the “¢”), and ¢ is the
azimuthal scattering angle.

Due to small scattering angles, the scattered particles travel inside the beam pipes
after the beams collide. They follow trajectories determined by transport matrices
of the magnet system until they reach the Roman pot detectors. As previously
described, the Roman pots measure the positions of the scattered particles with
respect to the reference orbit. Consequently, the parameters of the accelerator lattice
can be used to determine the scattering angle 017, and the deflection in the transverse
direction £'7, at the interaction point. The angle p{” between transverse & and the
scattering plane is arbitrary. Therefore 6;” = 67 sin pf”.

The motion of the particle in the accelerator is given with the so called Hill’s
equation [75],

d*¢
T HE(5)E(s) =0, (60)
where the K (s) from this equation is determined by the accelerator lattice.

The harmonic solution of Eq.:

£(s) = A/B(s) cos (U(s) + A) (61)

gives the transverse displacement as a function of the position (for arbitrary A
amplitude and \) along the s-axis (the accelerator axis). W(s) is the phase given

in terms of the beta function S(s) as
B S dS/
s B(5)

On the other hand, the angle of the particle trajectory, with respect to the s-axis,

U(s)

. (62)
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is given as the derivative of the transverse displacement &:

Oe(s) = % =— 2(5) [a(s) cos (¥(s) + A) +sin (U(s) + N)], (63)
where a(s) is the derivative of betatron (beta) function (3(s),
_lap

The values of the transverse displacement and the angle of the particle trajectory
at the detection point, £(s), and 6¢(s) respectively, are related to corresponding

variables at the interaction point, £'7(s), and 677 (s), by:

£ \/ ﬁﬁ (cos¥ + a* sin U) V/BB* sin U ¢rP )
= Y al . , (65
95 (1+aa )sm\Ifﬁ—&I-B(*oc —acos ¥) ﬁﬁ* (COS\I’ _ asin \If) eép

where [ is the betatron function, and §* is its value at the IP (5* = (s = 0)), o*
is the derivative of the betatron function £* at the IP , and W is the phase advance
from IP. These parameters are sometimes called twiss parameters of the lattice.

In order to measure the scattering angle of the protons, the angle has to be larger

than a minimum value denoted as the angular spread of the beam at the IP given

by:
| €
Tl = 67T—B*’ (66)

where ¢ is the normalized emittance. One can see that the larger 5*, the smaller the
angular spread of the beam. On the other hand, the larger 5* the larger the beam
spot at the IP,

P ep*
= . 67

O¢ 67 ( )
From Eq.(65)), the displacement in the transverse direction £ at the detector can

be written as

€= M%(coslll—i—a* sin W) &7+ \/BB01" sin U, (68)
and simplified to
£ = an&'’ + Lessbg", (69)

where

Lepp = /BB*sin¥,  ap = \/g(coslll +a*sin¥). (70)
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The experiment requires that L.sy is as large as possible, and on the other hand,
a1 as low as possible in order to have the transverse displacement ¢ independent of
the displacement at the IP, ¢/”, and maximized for the range of scattering angles 9? .
This is called “parallel to point focusing”. The conditions that meet this criteria are
when /33* is large, and when ¥ is the odd multiple of 7/2. When these conditions

are met, Eq. becomes
£ Lespbi”. (71)

From this equation, it is obvious that in this way the value of ng is obtained just
by measuring the displacement at the detector alone.
The smallest measurable four-momentum-transfer squared t,,;, is determined by

the smallest scattering angle measured 62 | by:

d .
Orb, = ——, (72)
Legy

where d;, is the minimum of the distance detector from the beam center, and it is
given by:
dmin = ko—{ + dOa (73)

where k is an accelerator constant determined by the maximum acceptable rate,
which is optimized by beam scraping, o¢ is the beam size at the detection point, and
dy is the distance between the beginning of the sensitive area of the detector and the
beam side of the Roman pot. In our case, dy ~ 1.8 mm, so it is not negligible. The
smallest measurable four-momentum-transfer squared ¢, is given by:

k2ep?
[tmin| = B (74)

From this equation, one can see that in order to obtain a minimum ¢, the
parameter 5* has to be as large as possible, and parameters ¢, and k as low as
possible. Large 5* is obtained by adjusting the accelerator “optics”, and low ¢, and

k by careful beam scraping and collimation.
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CHAPTER 4

RUN 2009

After many weeks of successful data collection in 2009 (Run9), the STAR
collaboration dedicated its final running week to “The Physics with Tagged Forward
Protons and the STAR Detector” experiment (“pp2pp at STAR” experiment). During
this last running week, the STAR collaboration was able to measure elastic scattering
events at very high precision. In order to have such precision, the angular spread of
the beams at the interaction point had to be minimized. This is accomplished by
setting special beam optics with a large S-function, see Section [3.7 In addition, the
emittance of the beams was drastically reduced by collimator scraping. The optical
properties of the transport channel from the IP to the Roman Pot detectors was
measured by various methods. In this chapter, we report on the running conditions
of the “pp2pp at STAR” experiment during this final week of the RHIC Run9 as well
as on the equipment calibration efforts in order to obtain the most accurate data

collection and analysis.
4.1 RUNNING CONDITIONS OF THE “pp2pp AT STAR” RUN9

During the final week of the RHIC run of 2009 (Run9), the STAR collaboration
was able to record a total of 33 million elastic triggers [6]. The data were taken
during four dedicated RHIC beam stores, with special beam optics of §* = 22 m and
luminosity of £ ~ 2-10%cm=2s 1.

The luminosity of the beam can be calculated using Eq. and Table :

(75)

where §* is the betatron function at the IP and p is the revolution frequency. For
100 GeV protons, v = 106.8. Np is the number of bunches per beam, N is the beam
intensity or the number of protons per bunch and ¢ is the emittance of the beam.
For more on the luminosity calculation, refer to [76].

The data were collected in 45 runs during four running days, with the closest
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Roman pot approach to the center of the beam pipe at about 10 mm, Fig. .
The full list of runs with all the running conditions, i.e. run numbers, number of
events taken, number and fraction of elastic events for each run and store number is
given in [77]. The list of data sets with Roman pot insertion positions is shown in
Table [3] The four momentum transfer squared ¢t range in “pp2pp at STAR” Run9
was 0.003 < || < 0.035(GeV/c)?. A summary of the running conditions, i.e. beam
parameters, during Run9 is given in Table [5]

TABLE 3. Roman pot insertion positions (in [mm)], from the beam pipe center) of
the “pp2pp at STAR” experiment during Run9. Each insert position combination
represents one data set. E - East; W - West; H - Horizontal; V - Vertical; I - Inner;
O - Outer.

Set No. WHI WHO WVU WVD EHI EHO EVU EVD

0 10.3 103 15.4 152 104 106 10.3 10.5
1 8.9 10.3 10.2 10.2  10.2 10.3 5.0 10.3
2 10.2  10.3 10.2 10.2 169 172 159 16.6
3 10.2  10.3 10.2 10.2 145 147 109 128
4 6.4 9.0 8.9 8.9 76 128 7.8 9.6
) 8.9 8.4 10.2 10.2 7.0 7.8 7.1 7.1
6 8.9 8.4 10.2 10.2 8.0 8.8 8.1 8.1
7 103 10.3 14.1 114 195 160 16.5 19.1
8 10.3 103 15.3 126 195 16.0 16.5 19.1
9 9.1 9.1 9.6 8.9 8.3 8.3 8.4 8.4
10 9.0 9.8 19.3 16.6 201 179 173 19.1
11 6.5 8.4 10.2 7.0 13.2 109 103 128
12 7.1 8.4 10.8 7.6 13.2 109 103 128

The set of 45 physics runs was analyzed to extract the physics of interest. This
entire set belongs to four RHIC beam stores, 11020, 11026, 11030 and 11032 (see

Table [d). Each one of these fills had the same bunch structure for both Blue and
Yellow circulating beams. Both beams had a fill structure of 120 x 120 bunches per
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TABLE 4. Beam stores (fills), data sets and runs of the “pp2pp at STAR” experiment
during Run9.

Store No. | Set No. Run No.
10181085, 10181086, 10182001, 10182002,
10182004, 10182005, 10182006
1 10182015, 10182016, 10182021, 10182025
10183013, 10183014, 10183015, 10183016,
10183017
10183018, 10183020, 10183021
10183027, 10183028
10183034
10183035, 10183037, 10183038
10184016, 10184017
10184018, 10184019, 10184020, 10184021
10184030, 10184031, 10184032, 10184033
10185001, 10185002, 10185003, 10185004,
11032 10185005, 10185006
11 10185018
12 10185019, 10185022, 10185023

11020 0

11026

11030

O[O0 ||| U =] W

beam (Blue x Yellow). However, 30 bunches were never filled in order to provide
an abort gap for the beams. Therefore, the fill structure of the four “pp2pp at
STAR” RHIC beam stores were 90 x 90 bunches per beam. 64 out of 90 bunches
per beam had useful polarization combinations where both bunches from Blue and
Yellow beams were polarized. This includes four bunch combinations, 16 11, 16 ||,
16 1] and 16 |1 in both Blue and Yellow beams.

The polarization pattern for the Blue beam was: — + — + 4+ — + — ..., and for
the Yellow beam was: + + — + + — ..., with 90 x 90 bunches for Blue x Yellow.
The polarization measurement during the run was performed by the CNI Polarimeter
group at RHIC [7§].

Also, the events that came from collisions of the first seven bunches were excluded

for the purpose of data analysis. The reason for this is because the timing of these
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TABLE 5. Running conditions of the “pp2pp at STAR” experiment during Run9.

Parameter Symbol Value

Beam momentum (Blue) DB 100.2 GeV/c

Beam momentum (Yellow) DYy 100.2 GeV/c

Beam polarization (Blue) Pg 0.60

Beam polarization (Yellow) Py 0.62

Beam intensity (No. of protons/bunch) Tpeam 5-10'° protons/bunch
Beam emittance € 157 mm mrad
Betatron function at IP Bey 22 m

Beam lateral width at IP aéf; 701.62 pm

Beam angular divergence gfx oy 33.36 urad

Fill pattern (No. of bunches/ring, Bluex Yellow) 120 x 120

No. of filled bunches/ring, Bluex Yellow

(after excluding the abort gap in the 1l pattern) 90 x 90

No. of colliding pairs 64

No. of bunches with both beams Polarized 64

No. of bunches with polarization pattern

either 11, |, T} or |1 for Pg and Py , respectively 16

Closest approach of the RPs

to the center of beam-pipe dmin ~10 mm ~ 12 Gpeam

bunches corresponded to the time when the preampliers of the SVXIIE readout chips

of the silicon detectors were resetting, which had to be done once per revolution of

the proton beam. After this reset, it takes a short amount of time for the preamplier

output to settle.

bunches.

This resetting occurred during the collision of the first seven

Figl21(a)|and Fig|21(b)|show the total number of elastic triggers collected during

the four days of data taking and the number of elastic triggers taken with Roman pots

inserted at different distances, as close as ~6 mm to the beam center, respectively.
The “steps” in Fig correspond to the time between the four RHIC stores during



Run9, when there was no beam circulating and data taking was stopped.
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FIG. 21. Total number of elastic triggers collected during Run9 (a) and the number

of elastic triggers taken as a function of RPs insertion distances (b).
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4.2 TRANSPORT MATRICES

Each beam particle can be described by a 6-component space vector
(x,04,9y,0,, E, 1), where (x,0,), (y,0,) are horizontal and vertical coordinates and
angles, respectively. FE represents the particle’s energy and the sixth component is
a factor used to add an angular kick on the particle momentum direction. On the
other side, each optical element in the beam line, i.e. dipole or quadrupole magnet
or a drift space etc., can be described by a 6 x 6 transport matrix [75]. Furthermore,
the beam line from one to another point along the z-axis (s-axis) can be expressed
as a single transport matrix, which is the multiplication of the transport matrices of
each optical element between the two selected points along z-axis of the beam-line.
In other words, a particular beam-line segment or even the whole beam-line along

the z-axis can be expressed as a single transport matrix, as given in Eq.,

M, = [ M, (76)

where n represents the number of optical elements between two selected points along
the z-axis (s-axis).

Therefore, the propagation of a single particle through one segment or the whole
beam-line, assuming there are no intra-beam interactions, can be described as the
rotation of the phase space vector by one single transport matrix derived from n

transport matrices, Eq.(76). This phase space rotation is given by

X(s) =[] Mi-X(s =0), (77)

where X (s = 0) is the particle’s 6-component space vector at the starting point
(usually the interaction point).

The 6 x 6 matrix of the particle transport can be decomposed into blocks where
A and B blocks (2 x 2) matrices refer to the action (focusing, defocusing, drift) on
horizontal and vertical coordinates and angles of the particles, respectively. D terms

reflect the dispersion effects of the dipole magnets on off-momentum particles, and



K factors are the angular action of kickers:
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The full 6 x 6 transport matrices calculated for the special running conditions

and beam-line optics between the interaction point and positions of the horizontal

and vertical Roman Pot stations,

during Run9 are given by [80]:

—0.091323718
—0.039643610
—0.0032942032
0.00018576904
0.0037320072
0

TMp g =

—0.21025431
—0.039643610
—0.0027368972
0.00018576904
0.0037362315
0

TMp,y =

—0.090388919

—0.03957787

0.0001727273

' —0.0001699380

—0.0037799928
0

—0.20912230
—0.039577874
—0.00033708581
—0.0001699380
—0.0037867681
0

TMy,y =

25.256606
0.013735315
—0.10011101

0.0082935034
—0.11795512
0

25.297812
0.013735315
—0.075230550
0.0082935034
—0.11795438
0

25.302702
0.015879885
0.051677892

—0.003448997
0.11709879
0

25.350341
0.015879885
0.041330921

—0.003448997
0.11710162
0

—0.0034073425
—0.00013825484
0.10435091
—0.043057022
—8.9159080e 05
0

—0.0038221063
—0.00013825484
—0.024819895
—0.043057022
—0.0001005389
0

—0.00010063732
7.333990e 0%
0.10617954
—0.043026306
1.1793282¢~05
0

0.00011938194
7.333990e 05
—0.02289911
—0.043026306
1.308234¢79°

0

0.076451454
0.005662108
24.759801
—0.63319645
—0.001763131
0

0.093437746
0.005662108
22.860216
—0.63319645
—0.0019312942
0

—0.10865959
—0.0021584442
24.800433
—0.63175279
—0.0002058859
0

—0.11513491
—0.0021584442
22.905178
—0.63175279
—0.0001875129
0

SO = O O O O

—0.0834729
0.0046256554
0.0027857599

—3.3403833e 05
0.0075384334
1

—0.069701292
0.0046256554
0.0029501839
—3.3403833¢ 05
0.0078009082
1

0.085060902
—0.004574485
—9.8771151e— 9%
—1.6627775¢~95
0.007531161
1

0.071508789
—0.004574485
—0.00017832232
—1.6627775e— 0%
0.0077933494
1

for both Blue and Yellow outgoing beam-lines,

(79)

(80)

(81)

(82)
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4.3 CALIBRATION OF THE SILICON DETECTORS

In order to obtain precise position measurements of detected scattered protons
with respect to the center of the beam pipeline, it was necessary to perform survey
and alignment of the assembled detector packages. This task was successfully
performed both in the lab, after they had been assembled, and in the actual setup
inside the RHIC tunnel at the end of Run9. The survey and alignment of silicon strip
detectors was part of the initial calibration, which was followed by the final micro
alignment, done by the use of the elastic events in the overlapping regions of the
horizontal and vertical RPs. Furthermore, the micro alignment [81] was followed by
a study based on the collinearity of the elastic events and Monte-Carlo simulations
of the acceptance boundaries, which are limited by the apertures of the quadrupole
magnets in front of the RPs in the outgoing RHIC rings. This study of the acceptance
boundaries was used to further constrain the geometry and to finalize the alignment
of the silicon detectors.

The information obtained from survey and alignment studies of the detector
packages were used to calculate the positions of the 1% silicon strip in each one
of the silicon detector planes, with respect to the center of the RHIC beam-line.
Also, this information was used to calculate the tilt angles of the detector packages
in the x — y plane, as they were positioned inside the RPs during the run.

The survey of the detectors performed in the lab provided information on the
positions of the two survey points (tooling balls), with respect to a previously
established reference point on the package (the centering pin). The position of the
centering pin and corresponding two tooling balls, for each RP package, together with
positions of the four cross points on each corner of the silicon detector plane, made
by lithography on the silicon during manufacturing, provided the positions of the 15
silicon strip on each detecting plane with respect to the positions of the tooling balls.
For the details of this part of the survey, refer to [77].

After the initial survey of the silicon detector packages in the lab, this process
was continued on the actual setup in the RHIC tunnel, with the goal of finding
positions of the 1% strips of each detector package with respect to the center of the
beam pipe-line. The measurements of the positions of the tooling balls, with respect
to the center of the beam pipe-line, were performed for each RP in 16 positions,
including the one where the RPs are fully retracted (~ 70 mm from the center of

the beam pipe-line). The displacements from the fully retracted positions of the RPs
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were measured by using Linear Variable Differential Transformer (LVDT), a position
measuring device installed inside the RHIC tunnel. Precisions of these measurements
were of the order of 30 pm.

The possibility of the existence of angles of tilt for each detector package in the
x—1y plane comes from the fact that each detector plane within each detector package
of the RP can be slightly tilted relative to the package itself and furthermore, each
package can be slightly tilted relative to the x —y RHIC coordinate plane. Therefore,
the final tilt angle is the sum of these two tilts.

A tilt of each detector package relative to the RHIC x — y coordinate plane is
calculated as an average tilt calculated for all surveyed LVDT Roman Pot positions.
These calculated numbers (tilt angles) are expected to be constant regardless of
LVDT positions of the Roman Pots. The table of calculated final tilt angles for all
detector planes in the RHIC x — y plane is given in Table [6] For the details of this

calculation, refer to [77].

TABLE 6. Calculated final tilt angles for all detector planes in the RHIC = —y plane.

Plane A Plane B Plane C Plane D
Tilt Angle Tilt Angle Tilt Angle Tilt Angle
(mrad) (mrad) (mrad) (mrad)

EHI 1.803 1.803 1.903 1.903
EHO -0.659 -0.659 -0.759 -0.659
EVU 0.366 0.566 0.466 0.466
EVD -2.041 -2.041 -2.041 -2.041
WHI -0.896 -0.996 -0.896 -0.796
WHO 0.607 0.507 0.507 0.607
WVD 1.320 1.420 1.420 1.220
WVU -2.472 -2.472 -2.472 -2.572

By using all the information above, both survey measurements and final tilt angles
calculations, one can calculate positions xy and 1 of the 1% silicon strip in all the
detector planes and their relation with the LVDT positions of the RPs [77]. For



29

planes A and C, in order to get these positions, one can use the given linear relation
between the calculated xy and yy and the LVDT position for each pp2pp run number
during Run9 (see [82]). On the other hand, for planes B and D, the calculated z
and g is the same for all the runs and are, also, given in [77].

The information about the techniques related to micro-alignment (global and

local alignment) can be found in [§1].
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CHAPTER 5

DATA ANALYSIS

The analysis was carried out on data taken during the 2009 RHIC run. The
“pp2pp” experiment had five days of dedicated running time with special beam
optics (see Chapter , during which, ~33 million elastic triggers were recorded. The
full data sample was recorded in 45 runs which can be grouped into 12 different
“sets” or into four different “beam stores”. Each one of the “sets” corresponded to
one “set” of the Roman pots’ positions and each “beam store” corresponded to one
RHIC beam fill (store).

The main objective of this analysis is to obtain forward scattering parameters,
the nuclear slope B in particular, through elastic scattering of polarized protons at
Vs =200 GeV and 0.003 < [t] < 0.035 (GeV/c)2

This chapter will address several key objectives in the process of obtaining forward
scattering parameters from recorded data: reconstruction of tracks from the raw data,
selection of elastic events, assigning kinematic parameters |¢| and ¢ and calculating

forward scattering parameters.
5.1 ELASTIC TRACK RECONSTRUCTION

The track reconstruction procedure can be performed in several stages. The first
stage starts at the strip/channel of the silicon micro-strip detector level. At this
level, the performance of the detector must be analyzed in detail. The next stage
in the analysis process is at the level of “clusters”. An elastically scattered proton
detected by the silicon detector, may deposit its energy in several neighboring silicon
strips of the hit strip. A cluster is a set of consecutive strips with an ADC read out
value above a certain threshold. Clusters represent real particles, and by analyzing
characteristics of clusters one can eliminate events that do not satisfy requirements
of the elastically scattered protons which are of interest in this study. The third
stage of track reconstruction procedure is at the level of Roman pot where tracks are
being tested whether they satisfy conditions of being an elastic event or not. The

final stage is the calculation of physics quantities and their analysis.
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5.1.1 PEDESTALS AND NOISE OF SILICON DETECTOR

The pedestals and noise level study plays a very important role in this analysis.
It characterizes the detector performance and provides a threshold value that needs
to be subtracted from the measured signal in order to eliminate the part that comes
from the noise. Because this study plays such an important role, several data taking
periods of about 10,000 inelastic events, during Run 2009, were dedicated only to
this purpose.

There are ~20,000 channels within the total of 32 detector planes (see Chapter
B), that must be studied for pedestal and noise levels. A distribution of pedestals
and pedestal-o values for one of the 32 detector planes, is shown in Fig. 22

The definition of the pedestal value is given with the following equation:
| XN
Py = N ; ADC;, (83)

where Py; is the pedestal value for the 57 channel and k' SVXIIE chip (see Chapter
, ADCj;, represents ADC value for the i*" event, j channel and k" SVXIIE, and
N is the total number of events.

On the other side, noise is defined as the root mean square (RMS) value of all

ADC counts and is represented with:

Okj = \/< ADCikj — ij >12. (84)

The total noise is defined as a sum of white noise and so called common mode
noise:

0]2‘ = 0120]' o Ul%? (85)

where o7, ; is the white noise.
The common mode noise is the RMS value for the distribution of average ADC
per SVXIIE chip and is represented with:

M=126

1
Qi = M ; ADCikj; (86)

where M is the total number of channels per one SVXIIE chip and in the case of
our experimental setup equals 126. In Eq. , o2 represents the RMS value for k%"
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SVXIIE chip and is given by:
N

1 & 1
o= 2= (2o aw) (87
=1

i=1
An example of pedestal mean values and noise for each individual strip within one
RP detector plane is presented in Fig. 22
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FIG. 22. Representation of pedestal and pedestal-o vs. strip (channel) number for
one silicon detector plane, i.e. B and D: z-view (6 SVXIIE chips) or A and B: y-view
(4 SVXIIE chips) detector planes. The red lines represent relative average pedestal
values of SVXIIE chips.
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5.1.2 THRESHOLD

Finding an optimal threshold value in the process of hits selection is of great
importance. It enables us to distinguish between the hits of interest and noise. Its
purpose is elimination of all the noise without affecting the real signal. The threshold
value is defined by:

Ty = Py +n - oy, (88)

where Tj;, Py; and oy, are threshold, pedestal and noise (RMS value of ADC counts)
values for j* strip and k* SVXIIE chip, respectively. Optimization of threshold
values is performed by finding the optimal value for the “sigma cut” coefficient n in
Eq. . In order to find the optimum n values, in other words optimum pedestal-o
cut, for determining the best signal to noise ratio, values of n = 3, 4, 4.5 and 5 were
studied carefully [83] and [84].

It was found that the optimum signal to noise ratio was obtained for n=>5 [84].
Applying this threshold cut allowed elimination of about 96% of the total noise
from the sample. The remaining 4% of the total noise was eliminated by applying

complementary energy cuts (see Section |5.1.5)).
5.1.3 CLUSTERS

As previously mentioned, elastically scattered protons detected by the silicon
micro-strip detector are represented by clusters. A cluster is defined as a set of
consecutive micro-strips with an ADC value above threshold (see Section [5.1.2)).
Every cluster is characterized by three observables: size (length), energy and position.

These three observables provide all the information about the particle and its track.

The size (length) of the cluster

Due to very small scattering angles of the scattered particles of interest, it is
expected that their trajectories are almost perpendicular to the silicon planes of the
detectors. This has the consequence of very limited cluster sizes (lengths). Therefore,
it is expected that clusters that come from real events are not larger than a few strips.

The size (length) of the cluster gives the information about the number of
consecutive silicon micro-strips of the detector which had an ADC read out value

above threshold.
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The energy of the cluster

The energy of the cluster is the total energy deposited by a particle in the material
of the detector. The energy loss of the particle in the material of the detector is well
described by the Landau distribution.

The position of the cluster

The position of the cluster is defined as the weighted average:
N

Sk

i=1

N )

>

=1

(89)

T =

where ¢ is the strip index and N is the number of strips in the set that forms the
cluster, i.e., cluster size (length). z; is the position of strip ¢ and E; is its collected

energy minus threshold (ADC read out value).
5.1.4 CLUSTER SIZE

As previously stated, scattered protons have trajectories almost perpendicular to
the silicon strip planes of the Roman pot detector. This is due to very small scattering
angles of the scattered protons. Therefore, it is expected that clusters have lengths
of no more then a few strips. Cluster sizes were checked and it was found that in
order to select good clusters (clusters that come from good events), it is sufficient
to introduce a cut that will remove all the clusters that do not have lengths of less
than or equal to five strips from further analysis. This, however, does not imply that
clusters with lengths greater than five can not be good events. Instead, as shown in
Fig. 23] the likelihood of having clusters with lengths greater than five is very small
compared to the number of particles with lengths equal to 1 or 2. Fig. 23| represents
the number of clusters with different lengths.

Fig. shows that clusters with lengths of five or more strips make < 0.5% of
the total number of clusters recorded in run 2009. This figure also shows that most

of the clusters have lengths of one or two strips.
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No. of hits

FIG. 23. Distribution of the size/length of clusters (in number of strips).
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FIG. 24. A sample cluster energy distribution (Landau distribution) in a silicon
strip detector. The energy is the sum of the deposited energy above threshold (7}, =
Py; + 50y subtracted) in all adjacent strips for clusters with lengths <5.



5.1.5 CLUSTER ENERGY AND FURTHER NOISE REDUCTION

When particles move through the detector, they deposit certain amount of energy
in the silicon micro-strip detectors (see Chapter [3).

the material of the detector is described by a Landau distribution. A sample energy

The total energy deposited in

distribution for one of the Roman pot detectors is given in Fig. [24]
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FIG. 25. Energy distribution for the clusters of size L = 1, 2, 3 and 3<L<5.
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The plot in Fig. shows, besides the signal of Landau shape, a peak that
is well separated from the Landau distribution and is located at low ADC count
values. This peak represents the noise or the background that remained after the
threshold cut was introduced. Due to this, a minimum energy cut, E;,, needed
to be introduced in order to remove the remaining noise/background. This cut is
complementary to the threshold cut introduced in Section[5.1.2] In fact, it represents
a “backup” if in any case, the threshold values are not set correctly.

This cut was obtained by finding minimum ADC count values between Landau
distribution and noise/background peaks. This was repeated for different cluster
sizes because the energy distribution varies with cluster size and has the tendency of
shifting towards higher energy values for higher cluster lengths.

Figure 25| shows energy distributions for the clusters of length L = 1, 2, 3 and
3<L<h.

Clusters of size 1 and 2 show clearly separated Landau distributions and noise
peaks. These distributions were used to determine the FE,;, cut value. The FE;,
value was set such that it removed no more than 0.2% of all the events. Analysis
shows that these values can be applied to all silicon planes in the detector package
and that they vary between Roman pot detectors. The full list of all E,;, cuts for
all Roman pot detectors is shown in Table [7] [I].

TABLE 7. Energy threshold based for different Cluster Size/Length and for each
Roman pot [I].

RP/cls length EHI EHO EVU EVD WHI WHO WVD WVU

1 19 18 18 19 20 23 21 19
2 27 24 28 28 27 29 29 25
3 49 45 48 50 50 53 46 46
4 and 5 65 60 69 70 60 64 60 29

Even with these and previous cuts, there is still a background in the data sample.

This requires additional studies on the properties of the clusters.
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5.1.6 NUMBER OF HITS PER PLANE

Further background reduction can be done by limiting the number of clusters
accepted per event. In an ideal case, due to the nature of an elastic event, there
would be only one cluster (particle) in each of the detector’s silicon planes. However,
this does not always happen. It was found that about 86% of the events were idealﬂ.
The remaining ~14% of events had more than one cluster per detector’s silicon
plane. This was mainly due to breakup of protons during interaction with materials
of the detectors (see Chapter @ and background that was still present after previous
noise/background elimination efforts. Fig.[26/shows distribution of number of clusters

in one Roman pot silicon detector plane.
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FIG. 26. Distribution of the number of clusters in one silicon micro-strip plane.
The first bin shows the number of events when no particle was detected by the
shown detector plane. However, in that case, it is most likely that the particle was

successfully detected in another arm.

The distribution quickly falls and the fraction of events with more than 5 clusters

per silicon plane is as low as ~0.5% of the number of events shown on the plot.

L“Golden events” (Events with one cluster per detector’s silicon plane that met all required
conditions)
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In order to further reduce the background, in the case of events with more than 5
clusters per detector’s Si plane, particularly problematic planes were excluded from
analysis of that specific event and the corresponding redundant silicon plane was
used instead. The installation of redundant Si detector planes was done to address
this type of events. Most probable reasons for the number of hits per plane exceeding
5 is the detection of particles of the beam halo (background) or showers of particles
caused by proton interactions with detector materials (see Section @ Each of the
five hits that remained in the data sample was studied by applying “matching”
condition (Section after which, only one hit (cluster) remained to be tested

for co-linearity.
5.1.7 SILICON STRIP/CHANNEL ANALYSIS

In this analysis, it was very important to retrieve the exact positions of scattered

protons.
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FIG. 27. Particle position distribution illustrating several malfunctioning strips in

the silicon micro-strip detector plane.

As previously explained, protons are represented by clusters that have certain

characteristics (size, energy, etc.). The size of clusters is the measure of how
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many strips/channels of the Si detector planes had an ADC read out value above
a certain threshold. By knowing the exact positions of the strips/channels inside
the detector package with their ADC read out values, one can easily determine the
cluster positions using Eq. , and hence the position of the scattered protons.
To successfully do that, the condition of each Si strip/channel was checked for
proper operational condition and possible malfunctions. There were a total of 20,160
channels used in this experiment and each one of them was checked for proper running
condition. Various strip/channel malfunctions are caused by extensive radiation over

time or by mechanical damage.

TABLE 8. Malfunctioning strips in the “pp2pp” Run9.

Detector (Plane) Strip Number

EHI (A) 252 - 254

EHO (A) 219

EHO (B) 100 - 103

EHO (C) 475 - 485

EVU (A) 08-100, 249, 441
WHI (A) 49 - 51

WHI (C) 442

WHO (B) 744 - 749

WHO (C) 496 - 4983

WVU (A) 497, 503, 504

First, hit position distributions for every Si micro-strip detector plane were
analyzed. A sample plot of such distribution is shown in Fig. 27]

This particular analysis was focused on finding bad channels. Bad channels
are characterized by very high occupancies (“hot” channels) or no occupancies
(“dead” channels). By analyzing position distributions of accepted clusters for all
Si micro-strip detectors, 40 “hot” and “dead” channels were found. Data that came

from these channels/strips were designated as not reliable and they were excluded
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from further analysis. Even though the number of malfunctioning strips was small
compared to the overall number of strips, they still affected the efficiencies of Roman
pot detectors (see Section [5.1.12)). The list of all bad channels from “pp2pp” Run9
are listed in Table

5.1.8 SIGNAL TO NOISE RATIO

Proper working condition of Si strip detectors can be also checked by calculating

the ratio of the most probable energy loss value represented by Landau energy loss
distribution (see Section [5.1.5) Ey,, and the value of the total noise o:

Enp
o

SNR = (90)

The most probable value of energy loss Fy,, and the total noise o values from
our experiment are 41 ADC and 10 ADC counts respectively. Therefore the signal
to noise ratio in our experiment was about 4:1 (see Fig. . Another analysis of the

signal to the total noise ratio from the “pp2pp” experiment is presented in [84].

5.1.9 TRIGGER CONDITIONS

The positions of the particles coming from real elastic events are measured by
two co-linear and opposite Roman pot detectors which are positioned symmetrically
around the STAR interaction point (IP). In order to select real elastic events, a
condition which checks that both scattered particles were detected by detectors
symmetrical around the IP was implemented. Besides four silicon detecting planes
that detected positions of the elastically scattered protons, there was a scintillator
in each of the Roman pot detector packages connected to two photo multiplier tubes
(PMT) which checked if detector was hit by particles.

Since there were a total of eight Roman pots in the experiment (16 PMTs), 16
signals were delivered to the STAR triggering system. Both amplitude and timing
information was recorded for each of the 16 PMTs.

A Roman pot “triggered” if either one of its two PMTs recorded a signal that had
proper timing and amplitude above the pedestal [83]. Elastic trigger was determined
by requiring that there is one proton detected on both sides of the IP and nothing

else. The definitions of “allowed” Elastic Arms are given in Table [9]
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TABLE 9. Definition of elastic trigger arms.

Elastic trigger arm RP combinations

EA (Elastic Trigger A - vert.) (WVU and not WVD) and (EVD and not EVU)
EB (Elastic Trigger B - vert.)  (WVD and not WVU) and (EVU and not EVD)
EC (Elastic Trigger C - horiz.) (WHO and not WHI) and (EHI and not EHO)
ED ( (WHI and not WHO) and (EHO and not EHI)

Elastic Trigger D - horiz.)

Also, there were combinations of triggered Roman Pots that were “forbidden”.
Those triggering combinations were vetoed and corresponding events were removed

during the event reconstruction procedure, Table [10]

TABLE 10. Definition of “forbidden” triggers.

Forbidden trigger RP combination
EHF (East Horiz. Forbidden) (EHI and EHO)
EVF (East Vertic. Forbidden) (EVU and EVD)
WHEF (West Horiz. Forbidden) (WHI and WHO)
WVF (West Vertic. Forbidden) (WVU and WVD)

As previously stated, whether Roman pots triggered or not was determined by
checking the amplitude (ADC signal) and timing (TAC signal) levels. The ADC
(Analog to Digital Converter) threshold level for the scintillator trigger counters was
determined and set to be equal to 5, (ADCy > 5), [83]. The range for the TAC
(Time to Analog Converter) signal of the trigger counters was determined to be
100< TAC;; signal <1700, where index i determins the Roman pot Id and index j
corresponds to PMT number within i*® Roman pot. Only after the ADC and TAC
threshold limits are met, are the conditions from Tables [J] and [I0| checked. Examples
of TAC and ADC plots for one of the triggered Roman pot arms are shown in
Figs. [28(a)| and 28(b)|
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FIG. 28. TAC vs. ADC signals for the EHI (a) and WHO (b) Roman pots. Elastic
events can be seen as a bright spot in the TAC for EHI vs WHO (c). The time

difference is shown in (d).

Figs. 28(a)[and [28(a)| show TAC vs. ADC signals for the EHI and WHO Roman
pots respectively . Since “pp2pp” TACs were set with a “common stop” [12], higher

TAC signals corresponded to the faster particles. Having this in mind, one can notice
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from Figs. 28(a), 28(b)|and 28(c)|that particles detected by the EHI Roman pot were
slightly faster than their corresponding co-linear particles detected by WHO Roman

pot. This indicates that the interaction point (IP) was not positioned at the s = 0
position which becomes obvious from Fig. The mean value of Gaussian fit on
this Figure is equal to 50 TAC units which corresponds to roughly 0.14 m (1 TAC
unit = 18 ps).

The triggering setup of the “pp2pp at STAR” experiment plays a very important
role in the elastic data analysis, mainly because it largely contributes to the
systematic uncertainties on the event loss and selection process. Therefore, a careful
study is needed in order to understand timing (TAC), collected charge (ADC) signals
and trigger setup in general [12]. This detailed study is presented in Sections @ and
3l

5.1.10 CLUSTER MATCHING

In order to increase the efficiency for detecting protons (see Section
and further reduce background, detectors were built from four detecting silicon
planes. Two of them measure particle z-coordinates and the other two particle
y-coordinates in the local coordinate systems relative to each of the detecting planes
(see Chapter . In an ideal case, every particle will deposit some energy in each
of the detectors’ silicon planes (see Section and will, therefore, have both
sets of local coordinates determine its local positions. In an ideal case these two
pairs of coordinates will give exactly the same local proton position. Consequently,
the matching check of these coordinate pairs is very important when dealing with
real data samples that are, naturally, not ideal. Applying this condition helps in
distinguishing between clusters that come from real events and clusters that come
from background. However, background particles can still make tracks which satisfy
this condition. It is estimated that the number of background particles which satisfy
the matching check is small. Thus, further checks are needed.

The matching algorithm is as follows. Positions of clusters from redundant planes
(A(B) and C(D)) were checked whether they satisfy:

‘(1&; Y1) a) — (T2; y2)C(D)‘RP < 2 - strip pitch, (91)

where strip pitch is the distance between centers of two consecutive strips (in X-type

detector equals 105 um and in Y-type detector 97.4 pm).
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However, before this condition was checked, redundant planes were examined
for their number of clusters in an attempt to extract every good elastic event from
the data sample. There are four pairs of redundant micro-strip detector pairs from
which cluster coordinates were matched and then extracted. In order to call the
event an elastic event, a single coordinate is needed to be obtained from each of
the four micro-strip detector pairs (both x and y coordinates on both sides of the
IP). Positions of clusters were matched based on the algorithm presented in Table
11} This algorithm is independently applied to all Roman pots from any triggered
detector arm on both sides of the IP.

TABLE 11. Cluster matching algorithm.

Case Ngs(A;B) Nus(C; D) position
0 0 0 NA
| 0 1 (@3 9)(c:p)
0 (75 9)(a;B)
0 >1
2 NA
>1 0
3 1 1 (x; y)m}e _ (IW)(A;B);F(IW)(C;D)
1 >1 ) )
4 o . (%3 Y)ave using min |A(z;y)|
5 >1 >1 (23 Y) ave using min |A(z;y)]

The differences between two sets of coordinates of the same kind were observed
and cluster positions difference plots were produced. Plots for these differences for
East Horizontal Inner (EHI) Roman pot are shown in Fig.

The plots in Fig. show that differences in particle positions between
corresponding planes are in most cases within 200 pm, which is equal to the width
of two Si strips. The number of events with position differences between coordinates
of corresponding planes that were above 200 pm represents 0.1% of the total data

sample and were excluded from further event reconstruction procedure because they
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do not originate from the same event. The plots in Fig. [29| clearly show one or two
distinguished peaks. The difference between those peaks is equal to the distance
between two strips within the same Si detector plane. Having one or two of these
peaks on these plots also serves as a check of how well two Si micro-strip detector
planes within the same detector package overlay each other. In other words, the
difference between n'* strip of one Si detector plane and n'* strip of the other,
corresponding, Si micro-strip detector plane serves as a good check of how well the
detector package was assembled. However, one needs to note here that it is quite
difficult to achieve 10um level precision in alignment of two independent detector
planes during the detector assembly process. In fact, this was never intended
in the first place due to the fact that it is easy to correct this lack of precision
by determining and applying corresponding offsets after the end of experimental

measurements and during the event reconstruction procedure.
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FIG. 29. Position difference in [m] between two corresponding, redundant = and y

planes within one Roman pot before application of the “cluster matching” condition.

Also, one can notice a clear off-zero shift for these distributions. These shifts occur

as an artifact of several procedures for detectors’ alignment and clusters’ positions
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calculations in the “global” (RHIC) coordinate system with respect to the center
of the beam pipeline. To successfully perform the cluster matching procedure, they
need to be taken into account. The table of the shifts used in the cluster matching
procedure is given in Table [12]

TABLE 12. Silicon detector planes offsets.

RP/offset EHI EHO EVU EVD WHI WHO WVD WVU
Sz [pm) 17 -1 34 0 -4 19 61  -41
Sy [pm] 41 46 28 7 63 30 7 -2

After confirming the condition from Eq. ([29)), positions of the particles were found
as an average value according to Table [11] from all four silicon micro-strip detector

pairs.
5.1.11 CO-LINEARITY OF ELASTICALLY SCATTERED PROTONS

Due to the nature of elastic events, elastically scattered particles should have
the same scattering angles. Hence, positions of particles that come from the same
elastic event are measured by two opposite, co-linear detectors, symmetrical with
respect to interaction point (IP). The difference between scattering angles at IP of
co-linear particles should be close to zero. Scattering angles were calculated from the
transport equations (see Section and their differences were analyzed. A sample
distribution of scattering angle at IP differences fitted with Gaussian fit is shown in
Fig. [30]

The plots in Fig. show that differences in scattering angles of elastically
scattered protons are in most cases within 3.5¢0 of Gaussian distribution fit. The
number of events with co-linear scattering angle differences bigger than 3.50 of the
fitted Gaussian mean represent about 15% of the total data sample and were excluded
from further analysis. The mean values of these differences show offsets from zero. It
is crucial to correct for these offsets before applying any co-linearity cuts. The plots

in Fig. [30| show differences in scattering angles before these offsets were corrected.
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FIG. 30. Distribution of scattering angle differences of two co-linear detector packages

[rad] before co-linearity correction cut.

Besides the 3.50 co-linearity cut, another quantity, x?, was calculated from values
of protons’ scattering angles as co-linearity analysis cross check with the purpose
to further reduce the remaining background. It is estimated that about 1% of
background events remained in the data sample after the 3.50 co-linearity cut was

applied. The y? variable is given by:

AG.\ 2 AG,\ 2
f:( %)+(—%), (92)
Oy Oy

where A6, and A6, represent the differences in scattering angles between co-linear

protons and o, and o, are one standard deviation from the Gaussian fits to these
differences, in x and y-coordinates respectively. A sample x? distribution is shown
in Fig. [31]

In order to cross-check the 3.50 co-linearity cut, a y? < 22 cut was applied.
Particles that passed the 3.50 cut have x? < 22. Co-linearity plots of 0, ,(East) vs.
0., (West) and A(6,) vs. A(6,) before and after 3.50 and x? < 22 co-linearity cuts
are shown in Fig. [33| and Fig. [32| respectively.
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FIG. 32. A(f,) vs. A(6,) before and after 3.50 and x* < 22 co-linearity cuts for
EHI-WHO detecting arm.
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x? < 22 co-linearity cuts for EHI-WHO detecting arm.

5.1.12 EFFICIENCIES OF SILICON STRIP DETECTORS

The efficiency of all Si strip detecting planes in the experiment was studied. The
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efficiency of a detector plane is defined as:

Ni detected
g; = —detected (93)
Ni,total

where N getected @A Nj 1orq; Tepresent number of detected and total number of
particles, respectively, that passed through i** detector plane. Total number of

particles is given with:

Ni,total - Ni,detected + Ni,not detected - (94)

In order to find the number of particles that passed through ** detector but were
not detected, one has to check whether those particles were, in fact, detected by
other detector planes (planes within the same Roman pot, as well as the ones within
opposite, co-linear Roman pot). If all other Si planes detected the particle, and the
one that is being checked didn’t, then the hit that was not detected can be added
t0 Ninot detected- From efficiencies of all detector planes represented in Fig.
only EVU(A) and WHI(A) have values less than 97%. This is mainly due to the
existence of bad channels/strips in this detector planes. If a particle hits the bad
strip (malfunctioning strip with high or no occupancies) and those strips are excluded
from track reconstruction analysis, it is still added to the N; not detected Decause bad
channels add to the inefficiency of the detector.

The efficiency analysis was also performed when clusters from bad channels are
not added to N; not detected- By comparing Fig. and Fig. one can conclude
that inefficiencies due to the existence of bad channels (see Section and Table
contribute the most.

Efficiencies of the detecting planes range from about 96.5% to over 99%.
Therefore, the overall average probability to detect a particle in one detector Si
plane pair is about 99.9%. The requirement that a particle is detected on both
sides of the IP in both pairs of Si detector planes (A and C or B and D; the same
nomenclature as in the Table gives the overall probability to detect elastic event
in the detecting system (all Roman pots) of about 99.6%.
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FIG. 34. Efficiencies for all detector planes.

5.1.13 FIDUCIAL CUTS

Generally, a fraction of particles acquires enough transverse energy from the
repulsive space-charge forces within the beam to form a halo. Characteristics of
the beam halo are absence of clearly defined separation between the halo and the
main core of the beam and increased population of the outer part of the beam.
These properties and proximity of the detectors to the beam during data taking
periods lead to the “pollution” of the elastic data sample with particles of the beam
halo. Therefore, the elastic event sample is further reduced by applying fiducial cuts.
Since there was no possibility to distinguish between particles from the beam halo
and elastically scattered protons, highly occupied regions in certain detector stations
were entirely removed from further analysis. It is estimated that only about 0.3% of
the particles were removed from the elastic data sample with this cut.

An example of proton [t| vs. ¢ distributions before and after fiducial cuts is

represented in Fig. (35|
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FIG. 35. |t| vs. ¢ distributions of elastically scattered protons.

5.1.14 ELASTIC TRACK RECONSTRUCTION SUMMARY

Table [L3] gives the total number of events processed in 45 runs and the number
of events after each major selection criteria: elastic trigger (scintillators with proper

combinations); cluster matching and co-linearity condition.

TABLE 13. Elastic event selection summary.

Tot. No. of events recorded 58,068,295

Tot. No. of elastic triggers 32,729,261 (~44% less)
Tot. No. of “matching” events 25,195,897 (~23% less)
Tot. No. of co-linear elastic events 22,130,570 (~12% less)
Tot. No. of “golden” events 18,452,103 (~17% less)
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5.2 ASSIGNING KINEMATIC PARAMETERS

5.2.1 BEAM TRANSPORT EQUATIONS

Correlated equations for positions and angles of the beam protons describe the
beam transport. Elastically scattered protons have small scattering angles and their
trajectories are determined by the beam optics. Consequently, elastically scattered

protons can be described by the same set of correlated equations [11]:

4= ay - x(I)P + Leffo - QLP + a3 - y(I)P + a4 - Q;P
Hi = asy xép + ags - Qip + aos3 - y(I)P + Qg4 - Q;P (95)
y' = az - JC%)P + aszz - HIP + ass - y(I)P + Lefgy - HIP
0;1: gy - Ty + gz - OF + agz - Yy + aag - 9 ,

where z{f and yi° are positions at the interaction point, and x4, y¢, ¢ and 93 are
positions and angles at the detection point respectively. Coefficients a;;, Lefs, and
Lets, depend on the magnetic fields in each of the four detecting sectors and are
given with transport matrices (see Section .

Solving the system of equations, Eq. , for the scattering angles at the
interaction point results in:

1 a4 (14031 P (14033 P
O = [xd + y' + ( —ai |ry + —a13 |y
‘ Legfo — 72022 Lessy Lessy 0 Lessy 0

Leggy

1 as2 32013 a32a21 P
0. = [yd+ xd+<— ass |y + —az |z |
Y Leppy — 72222 Lefta Lefta " Legta 0

effm

(96)

Using transport matrices leads to eight equations for proton scattering angles at

the IP, two for each detecting sector:

0, 5.1 0.03959 - [2% — 0.0001223 - y* 4 0.003615 - " + 0.0001477 - ¢ | [1/m]
0,5, 0.04039 - [y* +0.0001601 - z* — 0.004214 - yg© + 0.0001477 - ¢ | [1/m]
0 gy = 0.03953- [z —0.0001616 - y* +0.008311 - x5 + 0.0001471 - y5"|[1/m]
O,z = 0.04374- [y +0.0001301 - 27 + 0.001086 - yo~ + 0.0001471 -z |[1/m] (o7
0y, = —0.03952 - [7 —0.0001732 -y — 0.003572 - 2 + 0.0001477 - "] [1/m]
Oy, = —0.04032 - [y —0.0000824 - ¥ + 0.004281 -y — 0.0000144 - " | [1/m]
O yyy = —0.03945 - [z +0.0001983 - y* — 0.008249 - 5" — 0.0000002 - yg" | [1/m]
[ (1/m]

Oyiy.yy = —0.04366 - [y* —0.0000712 - z — 0.000999 - yg" — 0.0000002 - x| [1/m.

Positions z{ and y;~ were set to zero (which greatly simplifies Eq. (97))) and were
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chosen as reference points for various corrections (i.e. alignment, etc.). Sample plots

of proton scattering angles are shown in Fig.
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FIG. 36. QLP vs. O sample plot for one RP insertion position. Less populated

regions on the plots do not come from bad/noisy strips (see Section [6).

Scattering angle values obtained by using Eq. @ were used to calculate the

value of the four momentum transfer squared (see Section [3.7)):

)
=t = it () = ek, (98)
where Orp is given by:
O = /(012 + (012 (99)

The azimuthal angle ¢ was calculated by using the scattering angles values obtained

from the same set of equations, Eq. @:

HIP
o= arctan(e%). (100)

Since both co-linear protons come from the same, single event, the values of ||

and ¢ were averaged between the values obtained from both sides of IP. The sample
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distribution of kinematic parameters assigned to each proton in the sample is shown

in Fig.
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CHAPTER 6

SIMULATIONS AND DATA CORRECTIONS

After reconstruction of elastic events from the raw data, it was noticed that some
detecting regions had significantly less efficiency for particle detection. Bearing in
mind that the efficiencies of the silicon strip detectors were thoroughly checked, (see
Section and were found to be very satisfactory (more than 99%), the existence
of less efficient regions of the detectors’ planes was somewhat puzzling.

Less efficient regions of the detectors’ silicon micro-strip planes manifest
themselves as “shadows” on spatial, angular particle distributions or on the |¢| vs.
¢ plots (see Fig. and Fig. B7). A careful study of these so called “shadows”
was necessary because they are located across 100% acceptance detectors’ regions
and protons that this analysis is based upon come from these regions. Consequently,
not studying and/or correcting this effect can possibly lead to incorrect differential
cross-section values and hence, nuclear slope parameter B and o.;.

There are two causes for the existence of this systematic effect. The first one
is the interaction of scattered protons with materials from which Roman pots and
detector packages were manufactured. Steel edges at the bottom of the RP cylindrical
vessels and their thin front and back steel windows play a major role in the “shadow”
appearance. When scattered ~100 GeV/c protons reach the Roman pot detectors,
they interact with their materials and loose some energy (about 130 keV in 5 cm of
steel, [74]), which is a rather small loss when compared to their energy before this
interaction. However, there is a good probability that these protons will scatter or
even disintegrate, deviating from their original trajectories. This can lead to incorrect
detection of proton positions and angles. These offsets from original trajectories
were carefully studied because they can cause rejection of events for not satisfying
co-linearity selection criteria (see Section [5.1.11]).

The second effect that can cause “shadows” to occur are elastic trigger conditions
that were set in this experiment (see Section[5.1.9). When protons break apart after
interaction with materials of the Roman pots, the products of this interaction can
end up triggering scintillators of the Roman pot in the same detector station, causing

“forbidden” elastic trigger combination (see Table and hence rejection (“vetoing”)
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of perfectly good elastic events.

The experimental layout of this experiment (see Fig. is such that horizontal
RP stations are placed closer to the IP then vertical RP stations and hence, are
“front” RP stations. Therefore it is expected that vertical RPs (“back” RPs) have
both of the effects listed above and that horizontal RPs (“front” RPs) only have
trigger “vetoing” effects. However, the trigger effects are more complex in the
sense that there is significant probability that RPs from opposite sides of the IP
can “shadow” each other, especially if they are inserted to different distances from
the beam. This will be explained in one of the following sections.

In attempt to understand, estimate and correct these systematic issues that
occurred in the experiment and possibly improve and optimize future runs, Monte

Carlo simulations, using GEANT4 simulation software, were performed [85].

6.1 GEANT4 SIMULATION OF INTERACTIONS OF PROTONS
WITH THE MATERIALS OF ROMAN POTS

GEANT4 is a toolkit for the accurate simulation and passage of particles through
matter. Its areas of application include high energy, nuclear and accelerator physics,
as well as studies in medical and space science [85]. A simulation using GEANT4
includes all aspects of simulation processing starting with the geometry of the system
and materials involved, through introduction of particles of interest, generation of
primary events and their tracking, up to introducing physics processes that govern
particle interactions etc.

The simulation in this analysis follows these steps:

1. Generating a system of eight Roman pot detector packages using proper
geometry, dimensions and materials, positioned to resemble the entire detecting
system used in the experiment and inserted to the same 11 insertion positions
as in Run 2009.

2. Random generation of N protons with properties of real beam protons
(momentum, etc.) and their tracking throughout detecting system (including
appropriate High Energy Physics simulation models, e.g. FTFP-BERT, [85])

with emphasis on their interactions with virtual Roman pots.

3. Recreating trigger vetoing conditions, analyzing systematics and obtaining

correction functions.
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6.1.1 GEOMETRY OF THE SYSTEM AND MATERIALS INVOLVED

Since the goal of this simulation was to study particle interactions with materials
of Roman pots as well as the systematic effects caused by these interactions, it was
sufficient to simulate only Roman pot detecting system and not to include any of
the beam optics elements before or after it. In order to achieve this, particles were
randomly generated at the interaction point (IP) and then “propagated” to their
detecting positions by using the transport equations from experimental Run9 (see
Section .

Each Roman pot detector is simulated in that way that it resembles the real
detector used in the experiment. It consisted of detector housing and detecting
package. Each detector package is assembled out of four silicon detecting planes

with their power circuit boards and aluminum rails and one scintillator (see Section

3.4).

(a) Simulated RP detector package. (b) Simulated RP detector housing.

FIG. 38. GEANT4 simulation of RP detector package and housing. Detector package
is an assembly of Si micro-strip detectors (yellow), PCBs (green), Al rails (grey) and
vinyltoulene scintillator (magenta). Roman pot housing consists of stainless-steel

housing frame and thin stainless-steel window.

In this simulation it was sufficient to approximate silicon strip detecting planes
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as blocks of silicon material of proper thickness and not as an assembly of given
number of p-n junctions (micro-strips) used in the experiment. The detector housing
is simulated to be made of stainless steel with its interior filled with air at pressure of
one atmosphere. PCBs are made of GI0FR4 material which is a mixture of 60% SiO,
and 40% Epoxy-Resin (C;;H1203). Material for scintillators is vinyltoulene used by
many scintillator manufacturers. The full list of used materials in this GEANT4

simulation is given in Table [14]

TABLE 14. The list of materials used in GEANT4 simulation for detector

construction.

RP Component Material

Si micro-strip Si

Scintillator G4_PLASTIC_SC_VINYLTOLUENE
Al rails Al

PCBs G10FR4

RP housing Stainless-steel

G10FR4 60% SiO, and 40% Epoxy-Resin

Epoxy-Resin C11H1503, density = 1.268 g/cm?

Sensitive parts of simulated Roman pots were logical volumes of four silicon planes
and a scintillator logical volume [85]. These sensitive volumes were designed to
detect hits and record positions and deposited energies (in the volume material) of
all particles that interacted with them. Examples of deposited energies, by both
primary protons and all other secondarily produced particles in the Si micro-strip

planes and scintillators, are presented in Fig.
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FIG. 39. Deposited energies (in MeV) by primary protons and secondarily produced
particles in the sensitive logical volumes of simulated Si micro-strip planes and

scintillators.

Deposited energies depend on the type and energy of the particle and on the
properties of the material it passes. In the case of plastic scintillators, deposited
energy (due to the ionization by all particles) is proportional to the number of
“optical” photons produced in the scintillator. This number is proportional to
the number of “optical” photons that fell on the photo-cathode of the PMTs
which is further proportional to the number of photo-electrons emitted from this
photo-cathode. The ADC count variable (digitized integrated PMT current) that is
assigned to this number is what we measure in reality. In this GEANT4 simulation,
the full chain of ADC count on energy deposit dependence was not simulated.
Instead, for the purpose of triggering, the energy deposit was tuned in the scintillator
by smearing and linear conversion to the measured ADC spectra.

Positions of primary particles, for the cases when energy was deposited in
simulated scintillators, were recorded by four simulated silicon micro-strip planes.
Single hit positions were obtained by calculating an average value from the positions
recorded in silicone planes. It is important to note that deposited energies were
recorded for any particle that interacted with sensitive logical volumes and positions

only for primary generated protons. By having this, “pollution” in recorded data



92

samples by secondarily produced particles was avoided. On the other hand, it was
absolutely necessary to record energies deposited by all particles produced in the

simulation for the recreation of proper trigger conditions from 2009.

6.1.2 GENERATION OF PRIMARY EVENTS, PARTICLES OF
INTEREST AND THEIR TRACKING

Each of the simulated events started with random generation of two numbers,
four momentum transfer squared |¢|, and azimuthal angle ¢ at the interaction point
(IP). Azimuthal ¢ angle was generated as a uniform random distribution of numbers
between 0 and 27 and four momentum transfer squared |¢| from both uniform
and the distributions determined by the equation for theoretical differential elastic
cross-section (see Eq. (34)) with p = 0.13, 01r = 51.6 mb and B = 16.3 ¢?/GeV?,
parameters fixed to the expected values obtained from the extrapolation of the
World available experimental data [10], [9], [13]. Simulated [¢| range covered the
experimental pp2pp Run9 range which was between 0.001 (GeV/c)? and 0.035
(GeV/c)2.

The two generated numbers were then used to calculate scattering angles 6 and

6, at the IP by using Eq. (101)

0y 7 = arctan (tanf cosep)

101
QSV;JE = arctan (tanf singp) , (101)

where 6 = v/t/p and p = 100 GeV /c.
Smearing of scattering angles was done by adding a non-zero crossing angle and
beam angular divergence. The beam angular divergence was simulated as a Gaussian

correction with standard deviation of about 40 urad, obtained from the experimental

angular beam divergence of Run9 data, Eq.([102)),

OV =000 + 600 (102)

0 zy Ty

where 69%15 represents smearing of the scattering angles and is equal the sum of the
beam crossing angle and angular beam divergence.

Furthermore, another smearing was introduced, this time to the z positions of the
interaction point, also in the form of a Gaussian distribution around z = 0. Standard
deviation for the Gaussian of the z vertex position was also obtained from the data.

After the smearing process, calculated scattering angle values were used in
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transport equations (Eq. ) in order to obtain 69, 85, 2% and y? values in front

of both, blue and yellow, horizontal Roman pot stations (Eq. (103))). The beam

positions z{l and yi° were assumed to be equal to zero.

W,E W,E
T 0
0, 0,
=TH" : (103)
Y 0
93/ RP Hy IpP

Momentum directions of primarily generated protons were set by the use of

calculated scattering angles at the detection point HEVI’JE as:

Pz = 0
py = sin O (104)

W,E
p. = Fcos Opp .

Tracking of primarily generated 100 GeV/c protons started in front of the blue
and yellow horizontal RP stations and ended after both blue and yellow vertical RP
stations. Propagation of “primaries”, their interaction with materials and creation
and propagation of secondary generated particles is controlled by the predefined
GEANT4 high energy physics model FTFP_BERT.

Generated particles were accepted only if both particles on either side of the
IP did not hit the apertures of (2 and ()3 quadruple magnets. This was done by
calculation of a:g/?%g and ygé%s coordinates at ()2 and Q3 and their comparison with

the size of the apertures of corresponding magnets (see Section [6.4)).

6.2 CALCULATION OF KINEMATIC VARIABLES AT IP FROM
DETECTED SIMULATED EVENTS

After detection of positions and deposited energies of simulated particles at the
Roman pots, kinematic variables |t| and ¢ at the interaction point were calculated.
The methodology and reconstruction procedure was essentially the same as the
procedure and methodology applied during reconstruction of the same variables
from the IP in experimental data samples (see Chapter . Plots with calculated
kinematic variables together with positions of detected simulated particles are
represented in Fig. [0}
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FIG. 40. |t| vs. ¢ and spatial distributions of simulated particles.

6.3 TRIGGER BIAS

One of the purposes of this simulation was the study and correction of trigger

bias systematic effects observed in selected experimental data samples.

FIG. 41. Simulation of secondary particles production in the primary proton - RP

detector material interactions. Image curtesy of R. Sikora [§].
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The primary particle loss is more conspicuous in vertical Roman pot stations. As
previously noted in Chapter [3] vertical Roman pot stations are positioned farther
away from the interaction region and horizontal closer to it. Horizontal and vertical
Roman pot stations have overlap regions in the x — y-coordinate plane. When
outgoing scattered protons hit horizontal Roman pots, especially in the case when
they hit Roman pot steel edges, they can disintegrate or deviate from their original
trajectories. If this occurs, those protons become lost for corresponding vertical
Roman pot detectors and this loss is observed in the data samples of vertical Roman
pots. Furthermore, this process works reversibly, when hitting the edges of vertical
Roman pot stations vetoes corresponding events in horizontal Roman pots. This
process is less intuitive. As explained above, if the scattered outgoing proton
disintegrates while hitting the steel edge of one of the vertical Roman pots, the
showers of particles that are produced in the process can cause a “forbidden” trigger
combination (Table@ that vetoes events in the corresponding horizontal Roman pot

stations. Both of these effects can be observed in Fig[37]
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FIG. 42. Horizontal Roman pot detectors: Distributions of particles lost due to

trigger bias systematic effect.

It is estimated from the experimental data, that the loss of events due to trigger

inefficiencies in certain spatial regions of the detector are of the order of about 25%
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of the entire event sample collected in those regions. This is mainly in the regions
of the horizontal RPs that line up with steel edges of vertical RPs. This effect is
also present in the remaining regions of the detector due to uniformly distributed
material. However, from the simulation it was found that vetoing in those regions
was of the order of several percent.

The particles lost from experimental data can not be retrieved. However, their
number and spacial distribution is estimated in this GEANT4 simulation. The

distributions of particles in coordinate and ¢ — ¢ space are represented in Figfd2]

6.3.1 CORRECTION FUNCTIONS

A study of inefficiencies due to the trigger bias effect by use of simulated events
made the correction of this systematic effect possible. In order to successfully correct
selected experimental data, correction functions for |¢| distributions were calculated.
For this purpose, simulated |¢| distributions with and without trigger bias conditions

were used. Correction functions are obtained by:

N

C (=) = g e (105)

dt lw/o. veto

An example of a trigger bias efficiency (correction) function for a one of the
horizontal detector pairs is shown on Fig43]

Correction functions depend on several factors, mainly the precision of the
simulation. The errors of the correction functions, or in another words, the errors they
introduce to the results that are being corrected, are mainly related to the statistics
in the simulation. Therefore, the number of events in this simulation was optimized
in order to introduce negligible statistical errors to the experimental data samples
that are being corrected. However, even though obtained correction functions had
negligible statistical errors, the systematic error of this method still contributes to
the error of the final B result.

Each simulation had 10 million randomly generated events that were used to
calculate correction functions. Each of the analyzed data sets (with different Roman

pot insertion positions) had its unique correction function.
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FIG. 43. Trigger Bias efficiency as a function of |¢| for EHI-WHO horizontal RP arm,
data set 0, obtained from the GEANT4 Monte Carlo simulation.

6.4 DETECTOR ACCEPTANCE STUDY

One important result is obtained by simulating the acceptances and kinematic
ranges of the Roman pot detector system used in this experiment. As previously
explained (see Section , the trajectories of particles are limited by magnets’
apertures and detector acceptances. Acceptances for all RP positions in Run9
were calculated and |t|-values of the first strip of each RP was determined. This
study shows, given the size of the apertures of accelerator magnets and RP insertion
position, what range of |t| was achieved in Run9 and more importantly, what was
the |t|]-region of 100% acceptance that should be used for extracting of the nuclear
slope parameter B in a combined fit to the differential cross section. Example of
acceptance plot is presented on Fig{44]

The simulation process in the analysis of the Roman pot acceptances in the Run

2009 follows the same procedure given in Section (6.1.2]).
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FIG. 44. Acceptance as a function of |t|. A region in |t|, where the acceptance is
independent of |¢|, is the region of 100 % and flat/constant acceptance: 0.006 < |¢| <
0.02 (GeV/c)?. Low-|t| edge is determined by RP insertion depth and high-|¢| edge

by apertures of accelerator magnets.

Acceptance plots were obtained by dividing the number of simulated protons for
a given |t| value, that successfully reached the RP, passing through all the limiting
apertures of the magnets between RPs and IP, with the numbers of protons simulated
at the IP for exactly the same |t| value. The fall-offs in acceptance plots on the left
and right are determined by insertion length of each RP and the size of the magnets’
apertures respectfully. In addition, these fall-offs depend of the crossing angles (in
this simulation called the smearing of the scattering angles at the IP), beam and
vertex positions etc.

A comparison of the |t|-distributions of the experimental data sets from Run
2009 together with the acceptance functions for the cases of both detecting arms of
horizontal Roman pot detectors is given in Figs. 49| to From these acceptance
plots, a Table [15] of |t|-ranges used in fitting of experimental |¢|-distributions (see
Chapter [7)) is extracted.
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FIG. 45. RP acceptance functions (red) and experimental |¢|-distributions (blue) in
the case of RP insertion position set 0 for azimuthal —0.5 < ¢ < 0.5 rad (EHI-WHO)
and —2.7 > ¢ > 2.7 rad (EHO-WHI) ranges respectively (see Fig.[40land Sect. [7.1.1).
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FIG. 46. RP acceptance functions (red) and experimental |¢|-distributions (blue) in
the case of RP insertion position set 1 for azimuthal —0.5 < ¢ < 0.5 rad (EHI-WHO)
and —2.7 > ¢ > 2.7 rad (EHO-WHI) ranges respectively (see Fig.[40]and Sect. [7.1.1).
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FIG. 47. RP acceptance functions (red) and experimental |¢|-distributions (blue) in
the case of RP insertion position set 4 for azimuthal —0.5 < ¢ < 0.5 rad (EHI-WHO)
and —2.7 > ¢ > 2.7 rad (EHO-WHI) ranges respectively (see Fig.[40land Sect. [7.1.1).
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FIG. 48. RP acceptance functions (red) and experimental |¢|-distributions (blue) in
the case of RP insertion position set 6 for azimuthal —0.5 < ¢ < 0.5 rad (EHI-WHO)
and —2.7 > ¢ > 2.7 rad (EHO-WHI) ranges respectively (see Fig.[40]and Sect. [7.1.1).
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FIG. 49. RP acceptance functions (red) and experimental |¢|-distributions (blue) in
the case of RPinsertion position set 9 for azimuthal —0.5 < ¢ < 0.5 rad (EHI-WHO)
and —2.7 > ¢ > 2.7 rad (EHO-WHI) ranges respectively (see Fig. 40| and Sect.

711).

Five out of the total of eleven data sets were analyzed for extraction of the nuclear

slope parameter B. A discussion about reasons behind rejection of certain data sets

will be presented in Chapters [7] and 8]

TABLE 15. Ranges of |t used in the least square fits to the data for the extraction

of nuclear parameter slope B in GeV?/c2.

Set No. EHI-WHO EHO-WHI
0 0.006-0.02  0.007-0.02
1 0.006-0.02  0.007-0.02
4 0.006-0.02  0.008-0.02
6 0.006-0.02  0.008-0.02
9 0.006-0.02  0.008-0.02
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CHAPTER 7

PHYSICS RESULTS

In this chapter we present our result for the nuclear slope parameter B from
RHIC Run9. The result presented here was obtained from five experimental data
sets, each representing one combination of the measurement positions of the Roman
pot detector packages. There were total of thirteen experimental data sets with
approximately 22 million elastic events selected from the sample of about 33 million
elastic triggers recorded in Run9. Elastic events extraction procedure for selection of

proton-proton elastic events is shown in Chapter [5
7.1 ANALYSIS OF EXPERIMENTAL DATA SETS

As previously stated there were a total of thirteen experimental data sets analyzed
in this study. Those sets consist of 45 experimental data taking runs and belong to
four RHIC beam fills/stores of the Run9 (see Table {]) [77]. After careful analysis of
the goodness of all the sets, eight were rejected due to small number of elastic events
or problems with the beam fills/stores and/or malfunctioning Roman pot detectors
and five were used for extractions of nuclear slopes of the forward peak B.

After initial selection of good data sets (measurement positions of the detector
packages), elastic events were plotted in a |t| vs. ¢ space for the two horizontal arms
independently. Vertical detector arms were not used for this analysis (see Chapter
6).

In order to extract the result for nuclear slope parameter B, detector regions with
100% acceptance are used. In order to select events from full acceptance regions,
restrictions in ¢ ranges are introduced. Furthermore, the same ¢ ranges were used
in calculations of the simulated correction functions for compatibility, also shown in

Chapter [6]
7.1.1 |t AND ¢ RANGES RESTRICTIONS

A restriction of the ¢ range to —0.5 < ¢ < 0.5 or —2.7 > ¢ > 2.7 leads to a full

geometric acceptance in |t|. Applying this restriction leads to the |¢t|-distributions
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shown in Figs. to and Figs. to b5l According to [12] this ¢ region

needs further investigation and correction of systematic effects which are described

in Chapter
7.1.2 FITTING FUNCTION

The differential elastic cross section fitted to the data is given by [11]:

do aG2iN2 1+ p? aG? 1
% - C 47T(hc)2< tE) 167T(hc)2'O-tQOt'eBM_(p+ACI))'|T|E'Utot'€ QBM , (106)
where

% - ln<%) +1n<4(ﬁi|’;B)) —ln(%a|t|> et (—y-2 ln(a\t\)+ln(%a|t|>>. (107)

The treatment of the Coulomb phase, A®, is based on [86]. The total cross
section oy, = 51.6 mb [9] and p = 0.13 [10] were kept fixed to the values taken from
the World data, while the normalization constant, C', and the diffraction cone slope,

B, were fitted as a function of |¢|. Other parameters were:

a=137.0367"

- (2

A =0.71 GeV?/c?
a="5.6c*/GeV?

(he)? = 0.389379 GeVZmb
v = 0.5772157.

The differential cross section (see Eq. (106])) and its individual contributions are
shown as a function of |¢| in Fig. [50]
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FIG. 50. Differential elastic cross section (solid line) as a function of |t|. The
contribution from the Coulomb amplitude (dotted line), the hadronic amplitude
(dash-dotted line) and the interference amplitude (dashed line) are also shown. The
fixed parameters are o;,; = 51.6 mb [9], p = 0.13 [10] and B = 14.0 ¢?/GeV?2. Graph
taken from [11].

7.1.3 NUCLEAR SLOPE OF THE FORWARD PEAK B

Restricted ¢ range t-distributions from selected elastic data sets were fitted with
theoretical differential cross section functions given in Eq. in limited |¢| ranges
shown in Table [I5] Nuclear slopes of the forward peak B obtained from “pp2pp
at STAR” Run9 are presented in Table (16, Results presented are obtained from
corrected elastic |¢|-distributions as explained in Chapter [f] Correction functions of
each data set and both horizontal arms are presented on Figs. [51] to [55] also.

Statistical analysis of the x? goodness of the fit shows that nuclear slopes from
two detector arms are in good statistical agreement with above 70% confidence
levels and can therefore be averaged. The necessity for averaging these two nuclear
slope values comes from uncertainties in |¢| of the two horizontal detector arms.
Furthermore, results obtained from all data sets are cross-checked for compatibility.
x? statistical analysis was done to check if deviations between obtained B results is

statistically significant. This analysis is done on the sample of results obtained from
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two horizontal detector arms and on the sample of results obtained from five selected
data sets (see Table[16)). This analysis shows that observed deviations from the null
hypothesis (nuclear slope B results are compatible) are not significant. Consequently,
the nuclear slope B results obtained from either two horizontal detector arms or five

data sets can be averaged.

TABLE 16. The slope parameter B results obtained from experimental data sets.
x? values are obtained from two different x?(ndf = 1) and x?(ndf = 4) distributions
with their corresponding p-values (P,2(ndf)) and represent tests of the null hypothesis
for the B results obtained from two detector arms and five data sets respectively.
Each p-value in this table shows non significant deviation from the null hypothesis

(observed B values in the sample are compatible).

-B (GeV/c)™2
Data set x?(ndf=1) | P,2(ndf=1)
EHI-WHO | EHO-WHI

0 13.8+£0.4 13.7£0.4 0.03 86 %

1 14.640.5 14.540.6 0.016 90%

4 13.6£0.6 13.7£0.9 0.009 92%

6 13.6£0.7 13.3£1.0 0.06 81%

9 14.2+0.5 13.9£0.6 0.15 70%

Mean 14.0+£0.2 | 13.9£0.3 0.076 78%
x*(ndf=4) 2.3 1.71
P,2(ndf=4) 6% 79%

Average Mean 14.04+0.2

The slope parameter for “pp2pp at STAR” Run9 data sample is
2

B = (14.0£0.2) @

No error analysis has been applied here. The error used by the fitting program
is given by the statistics of each bin in |¢|. Following figures show fits to the limited
|t|-ranges (see Table ; —0.5<p<0.50r —2.7> ¢ > 2.7 is also indicated.
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0: [t|-distribution for arm EHI-WHO (top

left) and EHO-WHI (top right) after applying a cut in ¢ as described in the

text.

Generated simulation correction function for arm EHI-WHO (middle left)

and EHO-WHI (middle right) after applying a cut in ¢ as described in the text.
Corrected |t|-distribution for arm EHI-WHO (bottom left) and EHO-WHI (bottom
right) after applying a cut in ¢ as described in the text.
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1: |t|-distribution for EHI-WHO arm (top

left) and EHO-WHI (top right) after applying a cut in ¢ as described in the

text.

Generated simulation correction function for EHI-WHO arm (middle left)

and EHO-WHI (middle right) after applying a cut in ¢ as described in the text.
Corrected |t|-distribution for EHI-WHO arm (bottom left) and EHO-WHI (bottom
right) after applying a cut in ¢ as described in the text.
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4: |t|-distribution for EHI-WHO arm (top

left) and EHO-WHI (top right) after applying a cut in ¢ as described in the

text.

Generated simulation correction function for EHI-WHO arm (middle left)

and EHO-WHI (middle right) after applying a cut in ¢ as described in the text.
Corrected |t|-distribution for EHI-WHO arm (bottom left) and EHO-WHI (bottom
right) after applying a cut in ¢ as described in the text.
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|t]-distribution for EHI-WHO arm (top
left) and EHO-WHI (top right) after applying a cut in ¢ as described in the

Generated simulation correction function for EHI-WHO arm (middle left)

and EHO-WHI (middle right) after applying a cut in ¢ as described in the text.
Corrected |t|-distribution for EHI-WHO arm (bottom left) and EHO-WHI (bottom

right) after applying a cut in ¢ as described in the text.



Set 9:-0.5 <= ¢ <= 0.5

B 3500F

= E

B 3000f !
2500F
2000F
1500F
1000F

500},

tEHIWHO_data

%2 / ndf 102.5/103
Const 23.38 + 0.14
-B 13.98 + 0.46

G'.'...I....I....I....I.... LW TS N
0 0.0050.010.0150.020.0250.030.035 0.04

t [(GeV/c)?]

Correction Function for EHI-WHO

z 12 CorrFunc_EHIWHO
o F
D 1.15F
o E
o 1.9F
o f
o 1.055—
(=) 1
é? EﬁwM~ ,,wmw“*"“/ﬂ
0.95F
0.9F
0.85F
0 E I I I I I I I
*“0 0.0050.010.0150.020.025 0.03 0.035 0.04
t [(GeV/c)?]
t distribution with TRIGG. BIAS corrected
— r tEHIWHO_ corrected
§35°0:‘ ‘\\ X /ndf  115.8/103
o F .55 + 0.
3000F Const 24.55 + 0.15
Fo -B 142+ 0.5
2500F ,
2000F \
F o \
1500F \
F \
1000 B
: \
500F .
C:“‘"““"“"““"“"‘:\‘"“"““

0.0050.010.0150.020.0250.03 0.035 0.04

FIG. 55.

Detector position set No.

t [(GeV/c)?

Set9:2.7 <= ¢ <=-2.7

a—
o
=
=
©

2500F
2000F
1500
1000

500F

0

3500

3000F

W’W’B

5
[ T |

tEHOWHI_data

%2 / ndf 95.66 / 88
Const 21.34 £ 0.19
13.36 + 0.61

\
I\|

)

(o]

Pl N N FE Pl
0.005 0.010.0150.020.025 0.03 0.035 0.04

t [(GeV/c)?

Correction Function for EHO-WHI

_.
i

1.15

-
Yy

Y
T T T T [ [T T T

Trigg. Bias Efficiency
o
[6)]

0.95]

0.9

0.85]

0.8 aaaalaaag

)
Nh”*%mwrwﬁ““”“~gﬂ

CorrFunc_EHOWHI

o

0.005 0.010.0150.020.025 0.03 0.035 0.04

t [(GeV/c)]

t distribution with TRIGG. BIAS corrected

53500

=

S 3000
2500
2000
1500
1000

500

tEHOWHI_corrected

x2 / ndf 96.67 / 88
Const 22.59 + 0.20
13.94 + 0.61
1
%
1
\

o

1 1 1
0.0050.010.0150.020.025 0.03 0.035 0.04

t [(GeV/c)?]

110

9: [|t|-distribution for EHI-WHO arm (top

left) and EHO-WHI (top right) after applying a cut in ¢ as described in the

text.

Generated simulation correction function for EHI-WHO arm (middle left)

and EHO-WHI (middle right) after applying a cut in ¢ as described in the text.
Corrected |t|-distribution for EHI-WHO arm (bottom left) and EHO-WHI (bottom

right) after applying a cut in ¢ as described in the text.
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During careful reconstruction of |¢|-distributions, further limitations of |¢| ranges
were investigated to exclude ranges polluted with particles of the beam halo (so
called hot spots). From Figs. to m we find that detecting EHO-WHI arm was
more exposed to this systematic effect. This can be seen by the increase in the
number of events at lower |¢| and can not be explained by domination of the Coulomb

interaction.
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CHAPTER 8

SYSTEMATIC UNCERTAINTIES

This Chapter covers the different systematical uncertainties of this experiment
which contribute to the uncertainty of the nuclear slope of the forward peak B at
Vs = 200 GeV?/c? in the Coulomb-Nuclear Interference |t| region (CNI). These

systematical uncertainties can be divided in two groups:

1. Uncertainties affecting the determination of kinematic variables:

four-momentum transfer squared |t| and azimuthal angle .

- Uncertainties related to the transport matrices used in this

experiment: the uncertainty in the transport matrix element
Legy.
- Beam and Roman pot geometry and/or alignment related
uncertainties:.
- Uncertainty in the beam transverse position at IP (o, yo)

- Uncertainty of the beam angular divergence and unknown beam

crossing angle
- Beam position shift from the center at the Roman pot location

- Offsets effects due to accelerator optics elements such as kicker

magnets located before the Roman Pot locations

- Uncertainties related to the Roman pot survey

2. Uncertainties affecting the slope of the forward peak B

All of the above plus uncertainties in the fitting parameters: the
total cross section oy, the ratio of the real to the imaginary parts of the

scattering amplitude p.
- Background
- Geometrical acceptance and tracking efficiencies

Triggering (TAC) efficiencies
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8.1 UNCERTAINTIES AFFECTING THE DETERMINATION OF
KINEMATIC VARIABLES |t| AND ¢

8.1.1 UNCERTAINTIES IN THE TRANSPORT MATRIX ELEMENT
Legy

The effective length transport matrix element Ls, Eq. , is the major term in
the transport matrix. It represents the magnification of the scattering angle . The
uncertainty in the determination of the value of L.s is deduced from the uncertainty
of the magnetic field strength of the Qs and Q3 focusing magnets, which is a result
of the calibration of their magnet current measurements. A correction to the magnet
field strength was determined by analyzing the position and angle of the elastic
events falling in the overlapping acceptance region of the horizontal and vertical
Roman pots. An overall correction was applied to the magnetic field strength of the
Q2 and Q3 quadrupoles of the order of 0.5%. This results in a 1.5% uncertainty in the
value of L.ss. The next step is to determine how the uncertainty in L.ss propagates
to the uncertainty in [¢|.

Simplified transport matrix equations, which relate scattering angles 677 and
6,7 with = and y positions at the detection region, are given in Eq. (108). This
approximation of Eqs. is allowed only when transport matrix elements a1, a3,
a14 and aszy, ass, ass, respectively, have very small values:

~ T P
7 Legr (108)

~ TY 1P
y= Lepp -0,

Furthermore, oy, ,, is an uncertainty in L.s; and LZ;, and LY, are, by

approximation, the same. The polar angle is then given by:

Va2 4 y?
07 \JOID) 4 (01 Y (109)

Legy

Errors in detection positions and L.ss, namely o, o, and or_,,, propagate to the

eff
error in scattering angle 6 as follows:

2 2 2
% = b, T Tor,;

06, = (% : %)2 + (% : %)2 (110)

P0n.5p = (5Leff 'ULeff> :
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With a little bit of algebra, by using Egs. (109) and (110]), the propagated
uncertainty in the scattering angle 6 due to the uncertainty in the transverse positions

x,y and the uncertainty in 6 due to the uncertainty in L.r; can be obtained (see

Eq. (111)):

2

g
Jez,y = L2
DA, (111)
o2 _ (U : ULgff)
eLeff Lgff

Consequently, by starting with the simplified equation for the four-momentum
transfer squared (—t = p?0?) and its derivative with respect to 6 scattering angle
(A(—t) = 2p*0 - AO), one can obtain the uncertainty in momentum transfer squared

t due to the transverse positions z,y and Ley;:

A(—t)  2p%0-00 270

-t p26? T (112)
where
Ap =20 1
NG (113)
is the error on the average scattering angle 6,,, = w, assuming that errors on
Opast and Owest are uncorelated.
Using Eq. (111]) we get:
A6 o
Poy  lets (114)

0 V20 \/§Leff'

The uncertainty in Less is 1%, or,,;/Lesy is 0.01. Therefore, the uncertainty in
t due to the uncertainty in the value of L.fs is 1.4%.

8.1.2 UNCERTAINTIES IN ROMAN POT ALIGNMENT/GEOMETRY
AND BEAM RELATED UNCERTAINTIES

The error in ¢ due to the spatial uncertainty, o, and o,, or in other words the
error in t-scale due to the uncertainty in geometry or alignment of the Roman pot

detectors used in this experiment is given with:

A(—=t)  2p°0A0  2pA0  2pA0  2poy V2poy
—t p*0? po =t V2=t -t

where o0y is given in Eq. (111). o represents the uncertainty in the

(115)

alignment /geometry. The alignment of the detectors was established initially by
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using the survey information and then by introducing corrections using a study
of elastic events which fall in the overlapping acceptance region of horizontal and
vertical Roman pots, as described in [77]. The need to precisely know the positions
of detectors with respect to the beam center comes from the fact that the reference
point for the scattering angle is the beam center itself. On the other hand, the
position of the beam center is not well known. Other parameters of the beam are
unknown also, i.e. the beam transverse position at the IP (xg, o). Additionally,
it is very difficult to separate the beam angular divergence from the beam crossing
angle. Therefore, the final correction to the survey alignment was applied to take into
account all the above-mentioned geometrical unknowns and uncertainties, including
also the survey errors. The corrections were determined by simulating the transport
of elastically scattered protons through the RHIC magnets. The effect of the magnet
apertures on the trajectories of the elastically scattered protons was studied and
compared to the data. A comparison between simulation and the data, mainly of
the distributions and their acceptance boundaries, led to “correction” shifts to the
proton positions at the detection point of (Azgast, AYgast) = (2.5, —1.5)mm in Yellow
(East) beam Roman pot stations only. The uncertainty of this correction is about
400 pm which, together with Eq. , leads to the uncertainty in ¢ due to geometry
of about 0.002/+/—t.

8.1.3 SYSTEMATIC UNCERTAINTY DUE TO THE BEAM ANGULAR
DIVERGENCE

The uncertainty in the ¢-scale is mostly due to the beam angular divergence. To
calculate the uncertainty in the t-scale from the angular beam divergence we can

start from using the expression for the momentum transfer squared ¢:
—t = p°0. (116)

Taking the first derivative with respect to #, the uncertainty on ¢ due to beam

angular divergence is then:
5(—t) =2p x Vt x §(6), (117)

where the beam momentum p = 100.2 GeV/c and 6(0) = 54 prad based on the study
of the elastic event distributions 6(f), calculated as a weighed average (all runs) of

the o of the §(#) distribution of each elastic arm. This gives a value for §(¢) due to
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the beam angular divergence of

5(t) ~ 0.011 {Gev} x V. (118)

C

8.2 UNCERTAINTIES AFFECTING THE SLOPE OF THE
FORWARD PEAK B

8.2.1 BACKGROUNDS

The origins of the backgrounds in this experiments are related to several sources
such as beam-gas interactions, particles that originate from the beam halo or inelastic
events. If these events are not excluded from the analysis sample, they may affect
the extracted nuclear slope B value. In order to prevent this from happening, the
co-linearity condition was used during the data selection procedure. The x? analysis
removes a large portion of non-elastic events (see Chapter .

Additionally, during the estimate of the t-ranges used for fitting of the extracted
elastic t-distributions, regions of low-t were avoided due to the presence of so called
“hot spots” or in other words, regions highly populated with events that originated

from the beam halo.
8.2.2 UNCERTAINTIES IN THE FITTING PARAMETERS: p AND o

The least squares fit for the nuclear slope parameter B uses nominal values for
p and og,;. Our estimates of uncertainties related to variations in these parameters
are found to be %—f = 16 (¢?/GeV?) and 5‘;—11 = —.016 (c*/GeV?)/mb, respectively.
Consequently, changes in p and o, of about 10% results in negligible changes in

slope parameter B.
8.2.3 UNCERTAINTIES RELATED TO TRIGGERING LOGIC (TAC)

The largest contribution to the uncertainty of the slope parameter B comes from
the trigger timing cut-off. Understanding of TAC logic mechanism is of importance
for the slope extraction. The TAC cut-off, or in other words, decrease in triggering

efficiency, biases our experimental data and consequently our nuclear slope parameter
B [12].
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FIG. 56. Working principle of the QT and TAC electronics. Images curtesy of R.

Sikora [12].



118

The triggering system is described in Chapter [3| It consisted of one scintillator,
two photomultiplier tubes and QT and TAC boards [12], for controlling our trigger

logic settings. Figs. [56(a)| and [56(b)| illustrate timing settings during “pp2pp at

STAR” Run9. The general idea behind the trigger setup is following:
1. QT gate is started by RHIC clock input.
2. PMT signal arrival and check whether the signal is above threshold.

3. D flip-flop device checks for the timing of arrival of the PMT signal i.e. whether

the signal was on the leading or the trailing edge.

4. If the PMT signal was on the leading edge, discriminator fires and current

source starts charging a capacitor.
5. Collected charge is converted into TAC value.

A very important property of the triggering mechanism is that even though PMT
signals are “level triggered” they go through a “D flip-flop” device which passes them
through only if the triggering point lays on their leading edge. Thus, in the case of an
early arrival of the PMT signals with respect to the gate starts, even at the moment
of the gate openings and even if they were above the set threshold, the source would
not fire and charge a capacitor and TAC will be assigned the pedestal value (see
Fig. [56(b))).

Due to early PMT signal arrivals with respect to the gate starts, i.e. early
collisions or shifted vertex etc., certain fraction of events were not triggered and
were, therefore, lost which decreased detection/tracking efficiency of our Roman pot
system.

Fig. shows one example of the typical TAC signal distributions for the two
PMTs of one Roman pot detector package. The TAC trigger levels setup in
RHIC Run9 are presented in Chapter [5.1.9. Pre-set TAC ranges in Run9 were
100 < TAG;; < 1700 and ADC > 5 for ether of the PMTs of one Roman pot
detector package. All the events that fall into this range were accepted. However,
one can observe “cut-offs” in the distribution at the levels above TAC;; > 1200 and
a portion of events in which first of the PMTs had appropriate trigger levels and the
second did not (events on Fig. |57| with TAC;; < 100).
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FIG. 57. TAC values from the two PMTs of one Roman pot package.

As previously described events that had early PMT signals were automatically
assigned pedestal values (TAC;; < 100) and if this happened for both PMTs, these
events were lost. This loss will have direct impact on the detecting efficiency and

hence our reconstructed ¢-distributions and nuclear parameter B.
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FIG. 58. TAC efficiency for one Roman pot package (preliminary). Image curtesy of
R. Sikora, [12].
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A qualitative study of this effect was performed [I2]. This study is based on a
GEANT4 Monte Carlo simulation of the Roman pot triggering system. An early
estimate on trigger efficiencies related to TAC “cut-offs” show that low-¢ ranges are
more influenced by this effect, Fig. [58

A quantitative estimate of the uncertainty in nuclear parameter slope B from
this study and in the fitting ranges according to Table [15]is about 10%. However,
from Fig. [12] it is clear that this uncertainty in B will not be symmetric. It
is estimated that the nuclear parameter slope B is less likely to take smaller values
from what is presented in Eq. (119).

8.2.4 UNCERTAINTY RELATED TO +-DEPENDENT CUTS ON ¢

An independent analysis of the data was performed using different selections of
hits and elastic events. In particular, a t-dependent cut on ¢ was applied, which
allowed an increase in the ¢ range and the number of accepted elastic events. This
systematical effect is tightly related to the TAC trigger inefficiency. Thus, selecting
wider ¢ cuts changes the B slope values. Obtained parameter slope values from both

analyses agree within systematical TAC trigger errors.

8.3 THE EVALUATION OF THE SYSTEMATIC UNCERTAINTIES
OF THE SLOPE PARAMETER B BASED ON MONTE CARLO
SIMULATIONS

The evaluation of the systematic errors due to the uncertainty in beam emittance,
vertex positions and spread, beam transport matrix elements, and incoming beam
angles was based on Monte Carlo simulations. These simulations used the geometry
of the experimental setup and efficiency of the detectors as an input. The largest
source for the systematic error was the uncertainty of the initial colliding beam angles.

In order to estimate systematic uncertainties from this largest single source, upper
limits on the initial beam angles obtained from the data were used and the possible
shift of the ¢-distribution scale was studied. The horizontal component of a possible
initial angle has a negligible effect on the ¢-distribution, while the vertical component
leads to an uncertainty in the absolute value of ¢ for the reconstructed protons. This
resulted in an uncertainty on the fitted slope parameter of about 1.5% which agrees
within statistical errors.

The Monte Carlo simulation used for the estimate of systematic errors due to



121

above effects follows these steps:
1. Generation:

e Random generation of ¢, ¢ values together with vertex position
and its spread, z; and o, values. The four momentum transfer
squared |t| was generated from both uniform and also form distributions
determined by the equation for the differential elastic cross-section (see
Eq. ) with p, o4 and B parameters fixed to the expected values
obtained from extrapolation of all available experimental data. Simulated
|t| range was between 0.001 GeV?/c? and 0.04 GeV?/c?. The ¢ angle was
generated as a uniform random distribution of numbers between 0 and 27.
Vertex positions zy and o,, were generated as normal distributions with

requirement to match experimental vertex shifts and spread.

e Calculating scattering angles from generated ¢ and ¢
distributions and smearing of calculated angle values using the
angular beam divergence value from RHIC Run9. Angular beam
divergences were varied by changing eminence values between 7 < ¢ <
157.

og(e)-angular beam dvergence,
prr — \/%/]?2,
017 = atan(tanfcosp) + Gauss(0, og(¢))
0," = atan(tanfsing) + Gauss(0, og(e))
e Addition of crossing angles, calculating “generated” x, and vy,

beam shifts.

015 (tot) = 617 (scattering) + 6w (crossing)

23" = 2 - tanfL (tot)

Yo" = 2o - tand} (tot)
e Recalculation of transport matrix elements based on vertex z,
positions.
Q12 = Q12 + 20 * Q11
Q14 = Q14 + 20 - A13

gz = a3z + Zp - A31
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Q34 = Q34 + 20 * G33

e “Propagation” of scattering angles and positions to the Roman

pot detection point while checking QéE;W) and QéE;W) acceptances.

+RP o
(gf,P _ TMgen QQIUP
yRP (WiE)/(H;V) n
0" 0,"

2. Reconstruction:

e Additional smearing of reconstructed positions at the detection
point to simulate uncertainty of detected particle positions.
Azxzgrp and Aygp are kicker and alignment corrections and 05?5 is the
position uncertainty. This detected position uncertainty was determined
from the experiment and was set to be about 400pum while kicker and
alignment corrections were set as in the experiment.

o)

vy

thp = 2 + Gauss(Axgp, 0
Yrp =y + Gauss(Aygrp, o

e Calculation of scattering angles at the IP using reconstruction
TM coefficients: A,.,, By, Cy.y, Dy,y. Scattering angles at the IP were
reconstructed using the equations below and generated crossing angles
were subtracted. Transport matrix coefficients were calculated by the
use of slightly changed transport matrices to simulate the uncertainties
in transport matrix elements. The difference was 1% in leading terms.

Furthermore, an uncertainty in (x{°, y{°

) was introduced to incorporate
any scattering angle miscalculation that may have occurred due to the
lack of knowledge of the beam positions at the IP in the reconstruction

procedure.
eip(rec) — Al’ . .T,RP + B:E . y/RP + Cx . xgec + -D:E . y(?)”ec
Qép(rec) =A, -y + B, -2 + C, -yl + D, - xfc

3. Uncertainties estimates: The uncertainties of individual effects such as the
beam emittance, vertex positions and spread, beam transport matrix elements,
and incoming beam angles or any of their combinations are estimated in the

t-space by plotting At/tge, vs. tgen, where At = t,.. — tgen. As previously
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described, the resulting uncertainty of all effects above and in the range of ¢

given in Table [I5], was estimated to be of the order of up to 1.5% which is
illustrated on Fig. [59|
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FIG. 59. Resulting uncertainty due to the uncertainty in beam emittance, vertex

positions and spread, beam transport matrix elements, and incoming beam angles.

The total systematic error was calculated by adding in quadrature all the above
described systematic errors. As previously described, the major contributions
to overall uncertainty of this work are due to triggering logic and the choice of
t-dependent ¢ ranges of the selected elastic data sample. Total systematic and total

(syst. + stat.) errors are presented in Chapter @
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CHAPTER 9

SUMMARY AND CONCLUSIONS

We present here the measurement of the slope parameter B in forward
proton-proton elastic scattering obtained by the “Physics With Tagged Forward
Protons At STAR”, formerly known as the “pp2pp at STAR” experiment at the
Relativistic Heavy lIon Collider (RHIC) in the squared four-momentum transfer range
0.006 < [t] <0.02 GeV?/c? at /s = 200 GeV /c.

The “pp2pp at STAR” experiment is designed to measure polarized pp elastic
scattering and diffractive dissociation at RHIC in the squared four-momentum
transfer range 4 x 1074 < |t| < 1.3 GeV2/c® and 50 < /s < 500 GeV/c. The
measurements of elastic scattering in the non-perturbative regime of QCD at RHIC
allows us to probe the exchanged mediators of the force, the Pomeron and its odd
C-parity partner, the Odderon. This experiment addresses one of the main unsolved
problems in particle physics: long range QCD and confinement.

The slope parameter B in the squared four-momentum transfer range [t| <
0.05 GeV?/c? is sensitive to the exchange process and its y/s-dependence allows us to
distinguish among various QCD based models of hadronic interactions. Furthermore,
observation of the B slope parameter in pp collisions at the RHIC energies will allow
comparison with some interesting features of B observed in the case of pp elastic
scattering. It is of interest to see the B behavior in the RHIC energy range and
compare the values of B for the cases of pp and pp elastic scattering. This interest is
due to the fact that || distributions of the pp and pp elastic scattering become less
steep as |t| increases from 0.02 to 0.20 GeV?/c? which was not observed at higher
energies.

At RHIC the two protons collide at six interaction regions. Since the elastic
scattering angles are very small, scattered protons stay within the beam pipes of
the accelerator. Their trajectories are determined by the accelerator “optics” until
they reach the detectors which measure their positions. The coordinates of proton
positions are related to the scattering angles at the IP by the beam transport
equations, Egs. . The optimum condition for this experiment is to minimize

the dependence of the measured coordinates on the unknown collision vertex which
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is called “parallel to point focusing”. By tuning the accelerator optics, this desired
condition is achieved, which simplifies Eqs. .

The data presented here were recorded during several days of “pp2pp at STAR”
Run9 (run of 2009). The squared four-momentum transfer range was 0.006 < |t| <
0.02 GeV?/c? at /s = 200 GeV /c.

The identification of recorded elastic events was based on a co-linearity condition
and thus, it required simultaneous detection of two co-linear protons on either side of
the interaction point. To achieve this, the use of co-linear Roman pot detectors was
needed. Roman pots are cylindrical vessels carrying four silicon micro-strip detectors.
They can be inserted inside beam pipes without disturbing the accelerator vacuum
allowing four silicon detectors to be positioned very close to the proton beam orbits.
The layout and description of our detector system is shown in Chapter

In the time span of the “pp2pp at STAR” Run9 about 30 million elastic triggers
were recorded. To reduce the contamination of the elastic event sample with tracks
from background particles we applied a range of selection criteria which reduced the
event sample, leaving about 22 million elastic events. For each event the squared
four-momentum ¢ and azimuth ¢ were calculated and then averaged. A restriction
of the ¢ range and the dN/dt distribution corrections using Monte Carlo methods
led to a uniform geometric acceptance in a limited ¢-range. The determination of the
slope parameter B is confined to the ¢ regions given in Table

Least squares fits were performed to the distributions of Figs. [51] to [55] using
Eq. with B and a normalization constant as free parameters. Since the total
cross section oy and p parameters have not been measured in this study, we have
used values from fits to the existing pp and pp data. We used o4,y = 51.6 mb [9] and
p = 0.13 [10], which agree with the predictions from other models [87], [86], [88] and
[89].

We report our measurement of the nuclear slope parameter B obtained from
the RHIC Run9 in the squared four-momentum transfer range 0.006 < [t|] <
0.02 GeV?/c? at /s = 200 GeV /c to be:

+1.4 (syst.)

B =14.0 £0.2 (stat.)
—0.2 (syst.)

(GeV/c) ™2 (119)

This result is presented in Fig. together with the first slope parameter result
reported by the “pp2pp” collaboration in 2004 [I3] and the world data on elastic pp
and pp scattering.
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FIG. 60. Nuclear slope parameter B for this experiment (red triangle) compared
to the world pp and pp data set. The asymmetric error displayed for our result
includes both statistical and systematic uncertainties, which have been computed by

a quadrature sum. The open square represents the “pp2pp” result from 2004 [13].

Evaluation of the systematic errors due to the vertex positions and spread,
uncertainty in beam emittance, beam transport matrix elements, and incoming
beam angles was based on Monte Carlo simulations (see Chapter . The major
contributions to the overall uncertainty of this work are due to the timing of PMT
signals [I2] and the choice of a t-dependent ¢ range of the selected elastic data
sample and the uncertainty of the initial colliding beam angles. The total systematic
uncertainty was calculated by a quadrature sum of all the above systematic errors.

Total systematic and total (syst. + stat.) errors are presented in Fig. .
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TABLE 17. Systematic errors in B-nuclear slope parameter (§B) due to systematic
uncertainties in beam emittance (de), vertex position and spread (dzg, dyo, 6z and
§0,,), beam transport matrix elements (§L.ss), beam crossing angles (60.F ), and

timing of PMT signals (0T ACpyr). The total systematic experimental uncertainty

has been computed by a quadrature sum.

5B =
oe
dxo, 0Yo
020, 004, +0.2
OLcsy
30.0ss.
0T ACpyr | +1.4
+1.4
Total Syst.
-0.2

The “Physics With Tagged Forward Protons At STAR” experiment is entering
its Phase-IT* (x - initial stage of the “pp2pp at STAR” Phase-II). In this new
experimental phase wider kinematic coverage is expected to be achieved. The new,
redesigned vertically oriented Roman pot detectors will be mounted each at 15.2
m and 17.3 m which will allow high luminosity sampling, clean trigger and tight
constraint in exclusivity of the event and parallel running with other experiments
of the STAR detector with collaboration. Some of the physics processes to be
covered with Phase-II* are spin dependent elastic processes up to the “dip” region,
central exclusive diffraction (double Pomeron exchange), polarized *He + p and other

processes.



1]

[15]

128

BIBLIOGRAPHY

T. Obrebski, Energy minimum cuts analysis, Brookhaven National Laboratory
STAR Collaboration Technical Note (unpublished) (2010).

H. Cheng and T. T. Wu, Expanding Protons: Scattering at High Energies (The
MIT Press, 1987).

G. Antchev et al. (TOTEM collab.), Europhys. Lett. 101 (2013).
G. Antchev et al. (TOTEM collab.), Phys. Rev. Lett. 111 (2013).

V. Barone and E. Predazzi, High Energy Particle Diffraction (Springer-Verlag,
2002).

L. Adamczuk et al., Phys. Lett. B 719, 62 (2013).

N. Guler, Performance Characterization Of The Silicon Microstrip Detectors Of
PP2PP Ezperiment, Master’s thesis, University of Texas at Arlington (2001).

R. Sikora, Simulation of Trigger Efficiency and Bias in 2009, Brookhaven
National Laboratory STAR Collaboration Technical Note (unpublished) (2013).

A. Donnachie and P. V. Landshoff, Phys. Lett. B 296, 227 (1992).
C. Augier et al. (UA4/2 collab.), Phys. Lett. B 315, 316, 448, 503 (1993).

S. Biiltmann, Status of the Analysis of Elastically Scattered Protons, Brookhaven
National Laboratory STAR Collaboration Technical Note (unpublished) (2003).

R. Sikora, TAC properties and efficiency in pp2pp 2009 data, Brookhaven
National Laboratory STAR Collaboration UPC group presentation
(unpublished) (2013).

S. Biiltmann et al. (pp2pp collab.), Phys. Lett. B 579, 245 (2004).

H. Abramowitz, H. Brtels, L. Frankfurt, and H. Jung, Diffractive hard
scattering, Summary report of the Working Group on Diffractive Hard Scattering
in Future Physics at HERA (HERA, 1996).

T. Regge, Nuovo Cim. 14, 951 (1959).



129

[16] G. Chew and S. Frautschi, Phys. Rev. Lett. 8, 41 (1962).
[17] V. N. Gribov, Zh. Eksp. Teor. Fiz. 41, 667 (1961).

[18] J. C. Collins, D. E. Soper, and G. Sterman, Perturbative Quantum
Chromodynamics (1989).

[19] R. G. Newton, Am. Phys. J. 44, 639 (1976).

[20] R. Feynman, QED: The Strange Theory of Light and Matter (Princeton
University Press, 1985).

[21] D. Bernard et al. (UA4 collab.), Phys. Lett. B 198, 583 (1987).
22 R. Cahn, Z. Phys. C 15, 253 (1982).

23] P. Collins, An Introduction to Regge Theory and High Energy Physics
(Cambridge University Press, Cambridge, 1977).

[24] 1. Y. Pomeranchuk, Sov. Phys. JETP 7, 499 (1958).

[25] A. Sommerfeld, Partial Differential Equations In Physics (Academic Press.,
1949).

[26] F. Carlson, Ph.D. thesis, Upsala (1914).

[27] R. Forshaw, Quantum Chromodynamics and the Pomeron (Cambridge
University Press, The Pitt Building, Trumpington Street, Cambridge CB2 1RP,
UK, 1997).

[28] R. Peierls and L. Foldy, Phys. Rev. 130, 1585 (1963).
[29] L. Lukaszuk and B. Nicolescu, Lett. Nuovo Cim. 8, 405 (1973).

[30] D. Joynson, E. Leader, C. Lopez, and B. Nicolescu, Nuovo Cim. 30A, 345
(1975).

[31] V. N. Gribov, V. D. Mur, I. Y. Kobzarev, L. B. Okun, and V. S. Popov, Sov.
J. Nucl. Phys. 12, 699 (1971).

[32] T. Chou and C. Yang, Phys. Lett. B 128, 457 (1983).

[33] T. Chou and C. Yang, Phys. Lett. B 244, 113 (1990).



130

[34] J. Soffer, C. Bourrely, and T. T. Wu, Phys. Rev. D 19, 3249 (1979).
[35] J. Soffer, C. Bourrely, and T. T. Wu, Nucl. Phys. B 247, 15 (1984).
[36] J. Soffer, C. Bourrely, and T. T. Wu, Z. Phys. C 37, 369 (1988).

[37] A. Donnachie and P. V. Landshoff, Phys. Lett. B 123, 345 (1983).
[38] A. Donnachie and P. V. Landshoff, Nucl. Phys. B 231, 189 (1984).
[39] A. Donnachie and P. V. Landshoff, Nucl. Phys. B 244, 322 (1984).
[40] T. T. Wu and C. Yang, Phys. Rev. 137, 708 (1965).

[41] N. Byers and C. Yang, Phys. Rev. 142, 976 (1966).

[42] T. Chou and C. Yang, Phys. Rev. Lett. 20, 1213 (1968).

[43] T. Chou and C. Yang, Phys. Rev. Lett. 25, 1072 (1970).

[44] T. Chou and C. Yang, Phys. Rev. D 19, 3268 (1979).

[45] J. Soffer, C. Bourrely, and T. T. Wu, Phys. Lett. B 252, 287 (1990).
[46] H. Cheng and T. T. Wu, Phys. Rev. 182, 1852, 1868, 1873 (1969).
[47] H. Cheng and T. T. Wu, Phys. Rev. Lett. 24, 1456 (1970).

[48] H. Cheng and T. T. Wu, Phys. Rev. D 1, 1069, 1083 (1970).

[49] P. V. Landshoff and J. C. Polkinghorne, Nucl. Phys. B 28, 225 (1971).
[50] U. Amaldi et al., Phys. Lett. B 44, 112 (1973).

[51] U. Amaldi, M. Jacob, and G. Matthiae, Ann. Rev. Nucl. Sci. 26, 385 (1976).
52] E. Predazzi, Riv. Nuovo Cim. 6, 217 (1976).

[53] M. Bozzo et al. (UA4 collab.), Phys. Lett. B 136, 217 (1984).

[54] M. Bozzo et al. (UA4 collab.), Phys. Lett. B 147, 392 (1984).

[55] G. J. Alner et al. (UA5 collab.), Z. Phys. C 32, 133 (1986).

[56] N. A. Amos et al. (E710 collab.), Phys. Lett. B 243, 158 (1990).



131

N. A. Amos et al. (E710 collab.), Phys. Lett. B 247, 127 (1990).

F. Abe et al. (CDF collab.), Phys. Rev. D 50, 5518; 5535; 5550 (1994).

R. M. Baltrusaitis et al., Phys. Rev. Lett. 52, 1380 (1984).

M. Honda et al., Phys. Rev. Lett. 70, 525 (1993).

H. A. Bethe, Ann. Phys. 3, 190 (1958).

G. West and Y. Yennie, Phys. Rev. 172, 1413 (1968).

N. H. Buttimore, E. Gotsman, and E. Leader, Phys. Rev. D 18, 694 (1978).
A. Breakstone et al., Nucl. Phys. B 248, 253 (1984).

G. Barbiellini, Phys. Lett. B 39, 663 (1972).

M. Giffon, R. S. Nahabetian, and E. Predazzi, Z. Phys. C 36, 67 (1987).

M. Giffon, R. S. Nahabetian, and E. Predazzi, Phys. Lett. B 205, 363 (1988).
M. Harrison, S. Peggs, and T. Roser, Ann. Rev. Nucl. Part. Sci. 52, 425 (202).
K. Ackermann et al. (STAR collab.), Nucl. Instrum. Meth. A 499, 624 (2003).
S. Biiltmann et al. (pp2pp collab.), Nucl. Instrum. Meth. A 535, 415 (2004).
STAR collab., STAR Collaboration web page.

R. Yarema et. al., A Beginners Guide to the SVXIIE (Fermilab TM-1892, 1995).

C. J. S. Damerell, in Proceedings of the 1995 SLAC Summer Institute on Particle
Physics, SLAC-R-494 (SLAC, 1995).

W. R. Leo, Techniques for Nuclear and Particle Physics FExperiments
(Springer-Verlag, 1987).

H. Wiedemann, Particle Accelerator Physics I: Basic Principles and Linear

Beam Dynamics (Springer-Verlag, 1999).

A. Drees, Analysis of Vernier Scans during the PP2PP run9 (pp at 100
GeV/beam), Brookhaven National Laboratory STAR Collaboration Technical
Note (unpublished) (2011).



[77]

[78]

[79]

[80]

[81]

[82]

[87]
[38]

[89]

132

D. Plyku, Spin Dependence In Polarized Proton-Proton Elastic Scattering At
RHIC, Ph.D. thesis, Old Dominion University (2013).

I. Alekseev et al., Brookhaven National Laboratory (BNL) Collider Accelerator
Department Report No. XXX, Run09 pC Polarimeter Analysis, Brookhaven
National Laboratory STAR Collaboration Technical Note (unpublished)
(20XX).

S. Biltmann, Roman pot positions during Run09 spreadsheet, Brookhaven
National Laboratory STAR Collaboration Technical Note (unpublished) (2009).

S. Tepikian, Brookhaven National Laboratory STAR Collaboration Technical
Note (unpublished) (2010).

I. Alekseev, L. Koroleva, B. Morozov, and D. Svirida, “Roman pots alignment
at run 2009,” (2011), Brookhaven National Laboratory STAR Collaboration
Technical Note (unpublished).

D. Plyku, Technical Note on Survey Alignment of the Silicon Strip Detectors
used in the Roman Pots at STAR during RHIC 2009 Run, Brookhaven National
Laboratory STAR Collaboration Technical Note (unpublished) (2012).

K. Yip, Analysis Note for the Ay and rs using 2009 pp2pp data, Brookhaven
National Laboratory STAR Collaboration Technical Note (unpublished) (2010).

T. Obrebski, Characterization of Silicon Microstrip Detectors in PP2PP
experiment at RHIC, Engineering Thesis in Technical Physics, Warsaw
University of Technology (2010).

(Geant4 collab.), GEANT4 simulation toolkit.

B. Z. Kopeliovich, 1. K. Potashnikova, B. Povh, and E. Predazzi, Phys. Rev. D
63 (2001).

M. M. Block, Nuc. Phys. B (Proc. Suppl.) 71, 378 (1999).
V. V. Ezhela et al., Phys. Rev. D 65 (2002).

J. Soffer, C. Bourrely, and T. T. Wu, Eur. J. Phys. C 28, 97 (2003).



133

VITA

Ivan Koralt

Department of Physics
Old Dominion University
Norfolk, VA 23529

Education:

- Ph.D., Department of Physics, Old Dominion University, Norfolk, VA,
December 2013

- M.Sc., Department of Physics, Old Dominion University, Norfolk, VA, May
2007

- B.Sc., Faculty of Physics, University of Belgrade, Belgrade, Republic of
Serbia, March 2005

Typeset using KTEX.



	List of Tables
	List of Figures
	Introduction
	Theoretical Background
	Hadronic processes
	Regge Theory and the Pomeron
	Phenomenological models of pp and p elastic scattering
	Overview of pp and p Elastic Scattering

	Experiment
	Relativistic Heavy Ion Collider (RHIC)
	The STAR Detector
	Physics With Tagged Forward Protons At The STAR Detector
	Roman Pot Detector System
	Silicon micro-strip detectors
	The readout system
	Measurement Technique

	Run 2009
	Running conditions of the ``pp2pp at STAR" Run9
	Transport Matrices
	Calibration of the silicon detectors

	Data Analysis
	Elastic track reconstruction
	Assigning kinematic parameters

	Simulations and data corrections
	GEANT4 simulation of interactions of protons with the materials of Roman pots
	Calculation of kinematic variables at IP from detected simulated events
	Trigger Bias
	Detector acceptance study

	Physics Results
	Analysis of experimental data sets

	Systematic Uncertainties
	Uncertainties affecting the determination of kinematic variables |t| and 
	Uncertainties affecting the slope of the forward peak B
	The evaluation of the systematic uncertainties of the slope parameter B based on Monte Carlo simulations

	Summary and Conclusions
	BIBLIOGRAPHY
	VITA

