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ABSTRACT

MEASUREMENT OF POLARIZED PROTON - PROTON
ELASTIC SCATTERING AT THE RELATIVISTIC HEAVY ION

COLLIDER (RHIC)

Ivan Koralt
Old Dominion University, 2013

Director: Dr. Stephen Bültmann

Elastic proton-proton (pp) scattering is one of the most fundamental processes

in nature and yet, it is one of the most difficult to describe. There are two

interactions involved in this process: electromagnetic (Coulomb) and hadronic

(strong) interactions. Underlying exchange mechanisms of these two interactions

are the virtual photon and the Pomeron exchange, respectively. The difficulty of

elastic pp scattering arises from the fact that the nature of the Pomeron and its

exchange are not well understood and need a theoretical approach, which is still

under development.

At the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab

(BNL) we are studying the hadronic interaction via the dynamics of high-energy

pp collisions using the Solenoidal Tracker At RHIC (STAR) detector. The “Physics

With Tagged Forward Protons At STAR” experiment, formerly known as the

“pp2pp” experiment, is a part of STAR and it successfully conducted measurements

of elastic scattering observables by the use of its forward particle detectors, known

as Roman pots.

In this dissertation I present the measurement of polarized pp elastic scattering

at RHIC. I describe the “pp2pp at STAR” experiment focusing on elastic scattering

observables from the data taken in Run9. I report the result of the experimental

slope parameter B of the diffractive peak of the elastic cross-section at the

center-of-mass energy
√
s = 200 GeV in the four-momentum transfer squared t

range 0.006 ≤ |t| ≤ 0.02 (GeV/c)2. I also present data analysis techniques and

Monte Carlo simulations developed for the analysis and improvement of the detector

performance, correction of the recorded experimental data and an estimate of

systematic errors of this measurement.
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CHAPTER 1

INTRODUCTION

Elastic proton-proton scattering is one of the most fundamental processes in

nature and yet, it is one of the most difficult to describe. This difficulty arises from the

fact that the coupling constant (α) of Quantum Chromodynamics (QCD) becomes

large in the low four-momentum transfer squared |t| region, which makes this process

intrinsically non-perturbative. Consequently, the straight forward calculations from

perturbative Quantum Chromodynamics (pQCD) become non-applicable for the

description of elastic proton-proton scattering at low-|t|. Instead, in order to study

the dynamics of the low-|t| scattering process in pp elastic collisions, an examination

of our understanding of the underlying interactions and the associated exchange

mechanisms is needed.

There are two fundamental interactions involved in elastic pp scattering,

electromagnetic (Coulomb) and hadronic (strong). While the former can be precisely

described by Quantum Electrodynamics (QED), the latter is not well understood

and needs a non-pQCD theoretical approach, which is still under development.

Theoretical models, available to date, are used to describe the exchange mechanism

by approaches that are more or less based upon Regge theory and/or an eikonal

formalism. These models put great effort in the attempt to connect Regge and

QCD concepts. In Chapter 2 we will discuss some of these models. Also, we

will give a description of the kinematics of the diffractive processes, focusing on

elastic scattering. Furthermore, Chapter 2 discusses spin-independent observables:

total cross-section σtot, exponential slope parameter B and parameter ρ, in both pp

and pp̄ scattering experiments. Measurement of these spin-averaged observables at

various center of mass system (cms) energies is important in understanding exchange

mechanisms that dominate in the diffractive processes at low and high energies, as

well as in the description and understanding of the features observed in the behavior

of total elastic and differential cross-sections at different energies.

Protons and their interactions can be studied in particle colliders or in fixed

target experiments. Facilities, such as the Large Hadron Collider (LHC) at CERN

or the Relativistic Heavy Ion Colider (RHIC) at Brookhaven National Lab (BNL)
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have experiments that focus on high-energy proton collisions for the study of the

dynamics of the scattering processes in both polarized and unpolarized proton beam

collisions. Previous pp and pp̄ scattering experiments conducted at CERN and FNAL,

provided differential and total cross-sections at different cms energies and |t|-ranges.

The total cross-sections of both pp and pp̄ measurements reach minimum values at
√
s = 10 GeV, and show a slow rise towards higher energies. Regge theory, for

example, describes this behavior by postulating a Reggeon with quantum numbers

of the vacuum, in Pomeranchuk theorem called the Pomeron. The Pomeron is

considered a dynamical system, rather than a particle, often described in pQCD

as a color singlet combination of two or more gluons. It has mass, no spin and no

electric or color charge. Although the Pomeron phenomenology is well described in

Regge theory, its exact nature remains obscure. Therefore, more measurements are

needed in order to guide the theoretical research.

The highest cms energies in pp collisions are achieved by the TOTEM experiment

at LHC (CERN), reaching to date 8 TeV with unpolarized beams, and by the

Intersecting Storage Ring (ISR) experiments, also at CERN, reaching 20 GeV by

colliding polarized beams. The Relativistic Heavy Ion Collider (RHIC), on the

other hand, has the unique capability of colliding identical polarized species, like

protons, in a previously unexplored cms energy range: 50 ≤
√
s ≤ 500 GeV. This

gives the unique opportunity to study both dynamics and the spin-dependence of

pp scattering in previously inaccessible energy and four-momentum transfer squared

ranges. The “Physics With Tagged Forward Protons At STAR” experiment at RHIC,

formerly known as the “pp2pp” experiment is dedicated to the spin-dependent and

spin-independent hadronic phenomena at these energies and low-|t| range. Since the

beginning of its operation, in the time span of several runs, it successfully conducted

the measurements of the spin-dependent and spin-independent observables by the use

of its forward detectors, known as Roman pots. Roman pots are cylindrical vessels

that house Si micro-strip detectors used for particle detection. These cylindrical

vessels are inserted into the beam pipeline to bring silicon detectors as close as

possible to the outgoing proton beam, without disturbing the accelerator vacuum.

Chapter 3 is dedicated to all experimental aspects of the “Physics With Tagged

Forward Protons At STAR”.

Chapter 4 is dedicated to the latest data collection period in 2009 (Run9), with

transversely polarized proton beams collisions at 200 GeV cms energy. In a four
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day dedicated run during the 2009 data taking period, a sample of 33 million elastic

triggers was recorded. We present beam tune and overall accelerator performance

during this four day dedicated running period.

Chapters 5, 6 and 7 are the core of this work. Chapter 5 covers the detailed

description of the procedure followed and the selection criteria used in the extraction

of elastic events out of the 33 million elastic triggers, recorded in 2009. The extraction

of the nuclear slope parameter B in a combined fit to the differential cross-section,

which is the main result of this work, is reported in Chapter 7 and the study of all

systematical effects observed in recorded data from 2009 is presented in Chapters

6 and 8. For corrections of certain systematic effects, like a trigger bias, Monte

Carlo simulations using the GEANT4 toolkit were developed. We elaborate on both

systematic effects and Monte Carlo simulations in detail, also in Chapter 6. Finally,

the result of the experimental slope parameter B of the diffractive peak of the elastic

cross-section in the t range 0.006 ≤ |t| ≤ 0.02 (GeV/c)2 and
√
s = 200 GeV obtained

from RHIC Run9 is presented in Chapter 9.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 HADRONIC PROCESSES

Hadronic processes are classified in two distinct classes: soft processes and hard

processes [14].

• Soft processes are characterized by one energy scale which is of the order of the

hadron size R (∼1 fm). This is the only scale of the process. In general, these

processes are characterized by a small momentum transfer (|t| ∼ 1/R2 ∼ few

hundred MeV2), cross-section t-dependences of an exponential nature (dσ/dt ∼
e−R

2|t|) and a high suppression of large-|t| events.

Typical examples of soft processes are elastic hadron-hadron scattering and

diffractive dissociation.

The presence of a large length scale (R) makes these processes intrinsically

non-perturbative and from the theoretical point of view, perturbative quantum

chromodynamics (pQCD) is inadequate for their description. Instead, Reggie

theory [15], [16], [17], is used. According to this theory, soft hadronic processes

at high energies are universally dominated by the exchange of an enigmatic

object, the Pomeron.

• Hard processes are characterized by two or more energy scales, one of the

order of the hadron size R (∼1 fm) and another “hard” energy scale with

large momentum transfer (of the same order as this scale, & 1 GeV2). Typical

cross-section dependences on the momentum transfer in hard processes are

power-like, modulo logarithms.

The examples of hard processes are deep inelastic scattering (the momentum

transfer is q2, the virtuality of the exchanged photon or vector boson) and

large-pT jet production (the momentum squared is −p2
T ).

The high q2 allows usage of perturbative QCD. However, a part of the process

is still non-perturbative in nature and this component is embodied in the
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quark-gluon distribution (or fragmentation) functions of hadrons. The so-called

“factorization theorems” [18] ensure that perturbative and non-perturbative

parts are well separated from each other. The latter is universal: it can be

extracted from one process and used to predict another one.

In recent years, the interest in finding and investigating hadronic diffractive processes

that have both soft and hard properties at the same time arose, because these

processes open up the possibility of studying diffraction (to some extent) in a

perturbative framework. In other words, these processes open the possibility for

investigating the QCD nature of the Pomeron, and more importantly, for translation

of Reggie theory (phenomenology of soft phenomena) into the language of QCD, the

theory of strong interactions.

2.1.1 HADRONIC DIFFRACTIVE PROCESSES

A general definition of hadronic diffractive processes is formulated as follows:

• A reaction in which no quantum numbers (other than those of the vacuum)

are exchanged between the colliding particles is, at high energies, a diffractive

reaction.

In other words, diffraction is the process, asymptotical in nature (falls

asymptotically), that takes place whenever the diffused and incident particles have

the same quantum numbers.

In the definition above, no quantum number exchange is only necessary, but not

a sufficient condition. However, the main advantage of this is because it is simple

and general enough to cover all cases:

• elastic scattering, when exactly the same incident particles emerge after the

collision, Fig. 1(a).

1 + 2→ 1′ + 2′ (1)

• single diffraction, when one of the incident particles emerges out of the collision

unchanged while the other one gives rise to a final state of particles with the

same quantum numbers, Fig. 1(b).

1 + 2→ 1′ +X2 (2)
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• double diffraction, when each incident particle gives rise to a bunch of final

particles with exactly the same quantum numbers of the two initial particles,

Fig. 1(c).

1 + 2→ X1 +X2 (3)

An operational definition of the hadronic diffraction processes, equivalent to the one

above, is:

• A diffractive process is characterized by large, non exponentially suppressed,

rapidity gap in the final state.

The requirement of having a large rapidity gap in the final state (a large angular

region in which no outgoing particles are detected) is again, not a sufficient

condition for characterizing diffraction. There is another condition that needs

to be added to this definition and that is a non exponential suppression of the

rapidity gaps in the final state. In this way, contamination with non-diffractive

events is avoided. True diffraction can be distinguished only asymptotically from

non-diffraction contributions, as it is known that the latter decreases with energy.

The theoretical framework for describing diffraction is Reggie theory. This theory

provides a bridge between the two definitions from above. It describes hadronic

processes at high energies in terms of exchanging “objects” (not particles) called

Reggeons.

The Reggeon with quantum numbers of the vacuum, which dominates

asymptotically, is called Pomeron. In Regge theory, the exchange of other objects

with vacuum quantum numbers is suppressed at high energies. Therefore, the

diffractive processes are dominated by the exchange of the Pomeron. In the language

of Regge theory, “diffraction” is equivalent to Pomeron exchange.

2.1.2 KINEMATICS

Elastic scattering, Eq. (1) is a special case of a two body exclusive scattering

process which is given by:

1 + 2→ 3 + 4 (s− channel,Fig. 2(a)). (4)

In elastic scattering, two particles remain unaltered, but they have a different

kinematic configuration in the final state, Eq. (1). This type of scattering can be
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(a) Elastic Scattering (ES). (b) Single Diffraction (SD).

(c) Double Diffraction (DD). (d) Double Pomeron Exchange (DPE).

FIG. 1. Diffractive process classes. Left: a Feynman-like diagram showing the nature

of the process, with Pomeron exchange (the double lines) as an effective description of

the diffraction phenomena. Single external lines denote protons, the triple outgoing

lines represent proton dissociation. Right: a sample hit map in the pseudorapidity

(η) vs. azimuthal angle (ϕ) space.

described by two independent variables, usually chosen among the three Mandelstam

variables.

Mandelstam variables are used to describe the interaction of the incoming

particles in high-energy scattering processes and to characterize the kinematics of

the scattering.

Consider the elastic scattering of two protons in the center of mass (cms) system

shown in Fig. 2:

Mandelstam variables are represented as:

s = (p1 + p2)2 = (p3 + p4)2

t = (p1 − p3)2 = (p2 − p4)2

u = (p1 − p4)2 = (p2 − p3)2,

(5)

where p1 and p2 are the four-momenta of the the two colliding protons, and p3 and

p4 are the four-momenta of the the two scattered protons, respectively.

Mandelstam variables satisfy the identity:

s+ t+ u =
4∑
i=1

m2
i (6)
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1

2

3

4

(a) s-channel.

1

3’

2’

4

(b) t-channel.

1

4’

2’

3

(c) u-channel.

FIG. 2. Two-body exclusive scattering.

which is easily derived from definitions in Eq. (5) together with energy-momentum

conservation: p1 + p2 = p3 + p4, which leads to the conclusion that only two of them

are independent. In general, s and t are taken as the two independent Mandelstam

variables.

In proton-proton elastic scattering, two incoming protons collide and remain

intact after the collision. In the center of mass system, by definition we have

(assuming particles 1 and 2 are traveling along the z-axis with equal but opposite

momenta p1 and p2):

p1 + p2 = 0, (7)

where four-momenta of the particles can be written as:

p1 = (E1,p) = (E1, 0, 0, pz)

p2 = (E2,−p) = (E2, 0, 0,−pz)

p3 = (E3,−p′) = (E3,p⊥, p
′
z)

p4 = (E4,−p′) = (E4,−p⊥,−p′z).

(8)

Here p′ is the three-momentum of the scattering particles, p⊥ = |p′| sin θ is the

transverse two-vector momentum, pz = |p′| sin θ and θ is the scattering angle in the

cms coordinate system. The energies E1, E2, E3, E4 and momentums p and p′ can

be expressed in terms of the Mandelstam variable s = (p1 + p2)2, in the high-energy

limit (s→∞), as:

E1, E2, E3, E4 '
√
s

2
(9)
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and

|p|, |p′| '
√
s

2
. (10)

In proton-proton elastic scattering all particles have the same mass, m and

the relations between cms variables and the Mandelstam invariants become much

simpler. With respect to the conservation of the four-momentum, the Mandelstam

variables can be expressed (in cms system) as:

s = (p1 + p2)2 = 4(p2 +m2)

t = (p1 − p3)2 = −2p2(1− sin θ) = −4p2 sin2(θ/2).
(11)

For very-forward scattering, the scattering angle θ is very small. Therefore, one can

approximate the four-momentum transfer squared t as:

t ≈ −p2θ2. (12)

Mandelstam variables are Lorentz scalars because they are dot products of

four-vectors. In the case of s → ∞ or s >> m2 (like in this experiment), the

scattering angle in the cms system θ can be expressed as:

cos θ = 1 +
2t

s
. (13)

Another frequently used kinematic variable is the rapidity. This variable is defined

(for a particle of energy E and momentum component along z-axis) as:

y =
1

2
ln
E + pz
E − pz

. (14)

For massless particles (E ' |p|) rapidity is directly related to the scattering angle θ

(specifying the direction of motion with respect to the z − axis):

y =
1

2
ln

1 + cos θ

1− cos θ
= −ln tan

θ

2
, (15)

which is exactly the definition of pseudorapidity :

η ≡ y|m=0 = −ln tan
θ

2
. (16)

The values of the pseudorapidity for the cases of elastic scattering, single diffraction

and double diffraction processes is shown in Fig. 1.
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2.1.3 SCATTERING AMPLITUDE f (θ, s), DIFFERENTIAL

CROSS-SECTION dσ
dt

AND FORWARD SCATTERING PARAMETERS

B, ρ, σtot

The differential cross-section is equal to the square of the scattering amplitude

f (θ, s):
dσ

dΩ
= |f (θ, s)|2 , (17)

where dΩ = dϕd(cos θ) = 2πd(cos θ) is the element of the solid angle of the scattered

particle, independent of the azimuthal angle. By using this relation, the differential

cross-section can be expressed in terms of the Mandelstam variable t as:

dσ

dt
=
dΩ

dt

dσ

dΩ
= 2π

d cos θ

dt

dσ

dΩ
. (18)

By differentiating Eq. (11), with respect to sin θ we get:

dt

d cos θ
= 2p2, (19)

and therefore, with respect to Eq. (17),

dσ

dt
=

π

p2

dσ

dΩ
=

π

p2
|f (θ, s)|2 . (20)

With respect to the optical theorem [19], an invariant scattering amplitude is now

introduced:

F ≡
√
π

p
f(θ, s). (21)

The optical theorem relates the total cross-section to the imaginary part of the elastic

scattering amplitude fel(t = 0) in the case of very forward scattering as:

σtot =
4π

p
Imfel (t = 0), (22)

where p is the center of mass three momentum of the incident particle. The

optical theorem provides a relation between the total cross-section σtot, the forward

differential cross-section, dσ/dt (t = 0) and the ratio between the real to the

imaginary part of the scattering amplitude at t = 0, ρ. The forward differential

cross-section is given by:

dσ

dΩ

∣∣∣
θ=0

= |f(t = 0)|2 = [Ref(t = 0)]2 + [Imf(t = 0)]2 (23)
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and the real to the imaginary part of the scattering amplitude, ρ(t = 0), as:

ρ =
Ref(s, t = 0)

Imf(s, t = 0)
. (24)

Therefore, using the optical theorem, Eq. (22), Eq. (23) and Eq. (20), the forward

differential cross-section can be expressed as:

dσ

dΩ

∣∣∣
θ=0

=
(σ2

tot

16π

)
(1 + ρ2). (25)

Combining equations above, we get a relation between the forward differential

cross-section, parameter ρ and total cross-section:

dσ

dt

∣∣∣
t=0

=
(σ2

tot

16π

)
(1 + ρ2) = |F |2. (26)

where σtot(s) = 4
√
πImF (s, t = 0).

In order to express the differential elastic pp cross-section in terms of the

forward scattering parameters σtot, ρ and B, both contributions from electromagnetic

(Coulomb) and hadronic (nuclear) interactions have to be considered. The differential

elastic cross-section is related to the invariant scattering amplitudes for the hadronic

and the Coulomb interactions according to:

dσel
dt

= |Fc + Fn|2. (27)

However, due to the fact that Fc and Fn may have a relative phase and if we limit

ourselves to the case of elastic scattering, the differential cross-section can be formally

represented as:
dσel
dt

=
1

16πs2

∣∣Fce±iαφ(t) + Fn
∣∣2, (28)

where ± depends on whether we have pp or pp̄ collisions, respectively.

Fc can be precisely determined by using Quantum Electrodynamics (QED). From

QED, [20],

Fc(s, t) = −
√
πsG2

E(t)
2α

|t|
, (29)

where GE(t) is the electromagnetic form factor of the proton and is equal to

GE(t) =
1

1 + |t|2
Λ2

, (30)

with Λ2 = 0.71 GeV2.

Starting from the relativistic corrected Rutherford scattering cross-section,

dσc
dΩcm

=

∣∣∣∣∣−αG2
E(t)

2p sin2 θ
2

∣∣∣∣∣, (31)
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with α ≈ 1
137

as the fine structure constant, and using Eq. (30) together with the

differential cross-section for Coulomb interaction in the form, Eq. (20),

dσc
dt

= π

∣∣∣∣∣−G2
E(t)

2α

|t|

∣∣∣∣∣. (32)

On the other hand, there is no exact theoretical approach for the invariant

scattering amplitude of the hadronic interaction, Fn. However, experiments have

shown that at low |t|, this amplitude can be well approximated by an exponential

function [21]. It can be extracted by using the ratio of the real-to-imaginary parts

of the scattering amplitude at t = 0, Eq. (24) and the optical theorem, Eq. (22), [19]

and it is given in it’s empirical form as:

Fn =
s(ρ+ i)σtote

−B|t|
2

4
√
π

. (33)

By combining Eqs. 29, 33 and 28 the differential elastic cross-section at small-|t|
can be expressed in terms of the forward scattering parameters (σtot, ρ, B) as:

dσel
dt

= 4πα2
em

G4
E(t)

|t|2
− αem

G2
E(t)

|t|
σtote

−Bt
2 (ρ+ αemφ) +

1 + ρ2

16π
σ2
tote
−B|t|. (34)

Equation 34 represents the dependence of the differential elastic cross-section

on the four momentum transfer squared, t. This dependence can be divided into

three regions: Coulomb, Coulomb-Nuclear Interference and hadronic region. The

Coulomb term dominates in the low-|t| region. In this region, dσel/dt is dominated

by a 1/|t|2 dependence. As t increases, the relative contribution of the interference

term increases. The interference term is proportional to (ρ + αemφ). The helicity

independent Coulomb phase δ = αemφ is approximately [22]:

δ = αemφ = αem

(
ln

2

|t|(B + 8/Λ2)
− γ
)
, (35)

where the so called slope-B is the logarithmic derivative of the differential

cross-section at t = 0 and γ = 0.5772 is Euler’s constant. Finally, in the higher-|t|
region, the hadronic term dominates and the elastic differential cross-section falls

exponentially with |t|.
The low-|t| region, the region where the Coulomb amplitude dominates, is the

region where a partial total cross-section in t can be measured by comparing to

QED calculation. Total cross-sections are measured both at fixed-target accelerators
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and colliders. In the case of fixed-target accelerators, they are measured with

the transmission technique where they are determined from the attenuation of the

beam after it strikes the target. On the other hand, in colliders, there are two

approaches to the measurement of the total cross-section: Luminosity-independent

and Luminosity-dependent approach.

The total cross-section is related to the observed number of elastic and inelastic

events via Eq. (36):

Nel +Nin = Lσtot, (36)

where Nel and Nin are numbers of elastic and inelastic events, respectfully. The

luminosity L is often not very well known. Therefore Eq. (36) can not be used for

the extraction of the total cross-section σtot. Instead, it can be related to the elastic

scattering rate at t = 0 by the use of Eq. (26) via:

dNel

dt

∣∣∣∣∣
t=0

= Ldσel
dt

∣∣∣∣∣
t=0

= L1 + ρ2

16π
σ2
tot, (37)

where ρ is given by Eq. (24) and is small at high energies and does not need to be

precisely known. By the use of Eq. (36) in Eq. (37) and eliminating L we get a

luminosity independent formula for the extraction of σtot:

σtot =
16π

1 + ρ2

(dNel/dt)|t=0

Nel +Nin

, (38)

where (dNel/dt)|t=0 is extrapolated from the measured t-region of nuclear scattering

given by:

dNel

dt
=
dNel

dt

∣∣∣∣∣
t=0

e−Bt. (39)

In the luminosity dependent method, there is another very important factor, the

acceptance or efficiency factor, µ, related to the design of the experimental apparatus.

Hence, the scattering rate, Eq. (37) becomes:

dNel

dt

∣∣∣∣∣
t=0

= Lµdσel
dt

∣∣∣∣∣
t=0

. (40)

This method requires measuring scattering in the very-forward region, which is

experimentally very challenging. Therefore, the Roman Pot technique (see Section

3) has been very significant for these measurements in the very-forward direction.

The region where Coulomb and hadronic amplitudes have comparable magnitudes
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(CNI region, t ∼ 10−3 GeV2) is where the measurement of the ρ parameter can be

performed. The Coulomb and hadronic amplitudes are equal when:

− tmax =
√

3
8πα

σtot
. (41)

At
√
s = 200 GeV and pp cross-section of σtot = 60 mb, −tmax ≈ −2·10−3 GeV2/c2

and corresponds to a scattering angle of 0.54 mrad. The measurement of the

ρ-parameter is related to the real part of the forward scattering amplitude. It is

specially related to the energy dependence of the total cross-section which is presented

later [5].

Lastly, the t-region where the hadronic amplitude dominates is the region suitable

for the extraction of the nuclear slope parameter B in a combined fit to the differential

cross-section.

2.2 REGGE THEORY AND THE POMERON

In quantum physics, Regge theory [23] is the study of the analytic properties

of scattering as a function of angular momentum which is not restricted to be

an integer value, but instead, it is allowed to take any continuous complex value.

Mathematically, it is possible to treat angular momentum as a continuous complex

variable and interactions in terms of partial wave amplitudes (an expansion in

terms of analytical functions of continuous complex angular momentum variable).

Such amplitudes exhibit simple poles, often called Regge poles, in the complex

angular momentum plane at positions that correspond to particles of definite

angular momentum, tracing out a Regge trajectory, which may lead to s-channel

resonances. Each pole contributes to the scattering amplitude a term which behaves

asymptotically as:

A(s, t) ∼ sα(t) (s→∞, t− fixed). (42)

Thus the leading singularity (i.e. with the largest real part) in the t-channel

determines the asymptotic behavior of the scattering amplitude in the s-channel.

Therefore, one very important application of Regge theory is that Regge poles in the

t-channel can be used to predict the form of the amplitude in a high energy, low |t|,
two-body s-channel ractions. When applied to the strong interaction, Regge theory

provides the only general explanation of the energy behavior of two-body inelastic

cross-sections.

Regge theory belongs to the class of so-called t-channel models. These models
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describe hadronic processes in terms of the t-channel exchange of “something”. In

the simplest version of t-channel models, this “something” is a (virtual) particle. Due

to this, nuclear forces are usually attributed to the exchange of mesons (π, ρ etc.),

analogous to the exchange of virtual photons in electro-magnetic interactions of two

electrons. However, this becomes inapplicable at high energies due to the violation of

the Froissart-Martin bound, i.e. violation of unitarity. Regge theory overcomes this

problem by preserving the idea of the t-channel exchange, but describing the strong

force not as the exchange of particles with definite spin, but rather to the exchange

of a Regge trajectory. The large s-limit of hadronic processes is determined by the

exchange of one or more Regge trajectories in the t-channel. In terms of particle

physics language, Regge trajectories are often called Reggeons.

Exchanging Reggeons instead of particles leads to scattering amplitudes of the

type in Eq. (42), but without violation of the Froissart-Martin bound when α(0) < 1.

Pomeranchuk (1958) [24] predicted that total cross-sections would approach

a constant asymptotic limit. The Regge trajectory whose exchange ensures this

behavior became known as the Pomeron. It is generally supposed that in terms of

QCD, the Pomeron represents multi-gluon exchange. This very complicated Regge

trajectory is found to be responsible for the interactions at high energies and small

|t|.

2.2.1 REGGE TRAJECTORY

In a two-body scattering process in the t-channel, 1 + 2̄ → 3̄ + 4, the scattering

amplitude, as a function of s and t, can be expanded in terms of Legendre polynomials,

Pl(sin θ) as:

A1+2̄→3̄+4(s, t) =
∞∑
l=0

(2l + 1)Al(s)Pl(sin θ), (43)

where Al(s) are the partial wave amplitudes. Using Eq. (13), at low-|t| the previous

equation becomes:

A1+2̄→3̄+4(s, t) =
∞∑
l=0

(2l + 1)Al(s)Pl(1 +
2t

s
). (44)

The corresponding equation in the s-channel, 1 + 2 → 3 + 4, obtained by
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interchanging s and t is given by:

A1+2→3+4(s, t) =
∞∑
l=0

(2l + 1)Al(t)Pl(1 +
2s

t
). (45)

As previously mentioned, the Regge pole idea is based on the study of the analytic

properties of Al(s) and allowing the angular momentum l to become a continuous

and complex variable, α, on which the amplitude Al(s) depends: Al(s) → A(α, s).

Instead of studying the high energy scattering amplitude at finite momentum transfer

in the s-channel, Regge studied the low scattering amplitude at large momentum

transfer squared in the t-channel. The crucial step that enables this is the fact that

the angular momentum and the scattering angle θ are conjugate to each other.

If we assume that in the complex angular momentum plane (α-plane) an analytical

function A(α, s) exists, where A(α, s) = Al(s) when l = 0, 1, 2, 3..., then according

to the Cauchy residue theorem, the integration has a singularity if the plane is inside

the closed curve.

C’

C

N

FIG. 3. Sommerfeld-Watson integration contour representation of the scattering

amplitude.
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By use of the Sommerfeld-Watson transformation [25], the wave expansion from

the previous equation may be rewritten in the form of a contour integral in the

complex angular momentum plane to give:

A(s, t) =
1

2i

∮
C

dα(2α + 1)
A(α, t)

sin(πα)
P
(
α, 1 +

2s

t

)
, (46)

where the contour C surrounds the positive real axis, as shown in the Fig. 3. The

function A(α, s) is an analytical continuation of the partial wave amplitudes Al(s).

The denominator sin(πα) vanishes for integer l when α = l, giving rise to poles called

Regge poles. If we set α = l+δ and take δ → 0, the residue from the term 1/ sin(πα),

according to the Cauchy residue theorem, yields (−1)l. Therefore, the integral leads

back to summation from Eq. (45).

The amplitude A(α, t) is unique when A(α, t) < eπ|α| as |α| → ∞ [26].

Unfortunately, there are contributions to the partial wave amplitudes which alternate

in sign (i.e. are proportional to (−1)α). Since the required inequality is violated along

the imaginary axis, it is necessary to introduce two analytic functions A(+1)(α, t) and

A(−1)(α, t). Therefore, Eq. (46) becomes:

A(s, t) =
1

2i

∮
C

dα
(2α + 1)

sin(πα)

∑
η=±1

(η + e−iπα)

2
A(η)(α, t)P

(
α, 1 +

2s

t

)
, (47)

where A(+1)(α, t) and A(−1)(α, t) are called even- and odd -signature partial wave

functions and η = ±1 is the signature of that partial wave.

If only simple poles exist (i.e.A(α, t)), the contour C can be deformed into contour

C ′ according to [27], which runs parallel to the imaginary axis with Re(α) = −1/2

and closes at infinity. Therefore:

A(s, t) =
1

2i

− 1
2

+i∞∫
− 1

2
−i∞

dα
[(2α + 1)

sin(πα)

∑
η=±1

(η + e−iπα)

2
A(η)(α, t)P

(
α, 1 +

2s

t

)]

+
∑
η=±1

∑
nη

η + eiπαnη (t)

2

βnη(t)

sin(παnη(t))
P
(
αnη(t), 1 +

2s

t

)
.

(48)

The simple poles αnη(t) are called even- and odd -signature Regge poles, (η ± 1

respectfully) and βnη(t) are the residues of the poles, multiplied by π(αnη(t) + 1).

In order to isolate the high energy behavior of the scattering amplitude in the

Regge region, we investigate the asymptotic behavior of Legendre polynomials by
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using the crossing symmetry and deforming the contour. In the region of our interest

(s >> t), Legendre polynomials are dominated by the leading term:

Pl

(
1 +

2s

t

)
→ Γ(2l + 1)

Γ2(2l + 1)

( s
2t

)l
, (49)

where Γ(x) is the Euler gamma function. In this limit, the contribution to the right

side of Eq. (48) along the contour C ′ vanishes as s → ∞, so it can be neglected.

Thus if we take the distribution from the dominant Regge pole, which has the largest

value of the real part of αnη(t) we get:

A(s, t)
s→∞→ (η + e−iπα)

2
β(t)sα(t), (50)

where α(t) is the position of the leading Regge pole at some value t and with signature

η. The factors depending on t but not on s have been absorbed into the function

β(t). Last equation represents the explicit dependence of the high energy amplitude

in the s-channel on the Regge poles in the t-channel. The amplitude is a sum of

powers of s, with exponents equal to the location of Regge poles αn.

In the t-channel process, with positive t, the amplitude has poles which

correspond to the exchange of physical particles of mass mi and spin Ji, where

α(m2
i ) = Ji. By plotting the spins of low lying mesons against mass squared, Chew

and Frautschi [16] noticed that they lie in a straight line. These straight lines are

called Regge trajectories (see Fig. 4). The Regge trajectories are parameterized as:

α(t) = α(0) + α′t, (51)

where α′ represents the slope of the Regge trajectory with conventional average value

of α′ ' 1.

With respect to Eq. (50), the asymptotic s-dependence of the differential

cross-section is given by:
dσ

dt
∝ s(2α(0)+2α′t−2). (52)

The amplitude from Eq. (50) can be viewed as the exchange of an object with

complex angular momentum α(t). Although it can’t represent a regular particle (due

to non integer or half integer angular momentum and dependence on t ), it can be

viewed as the effective exchange of a whole series of particles lying on the same Regge

trajectory α(t). This is called the exchange of a Reggeon.
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FIG. 4. The Chew-Frautschi plot for mesons, α(t) vs mass squared or t [GeV2].

Regge trajectories lie in a straight line.

2.2.2 THE POMERON

The Pomeron as a Regge trajectory

Pomeranchuk [24] showed that under general assumptions, any scattering process

in which charge is exchanged has a cross-section that vanishes asymptotically.

Following his assumption, Foldy and Piers [28] proved that this particular scattering

process must be dominated by the exchange of quantum numbers of the vacuum if

its cross-section does not fall with the increase of s.

Using the intercept of the Regge trajectory, which dominates a particular

scattering process, together with the optical theorem from Eq. (22), we obtain the

asymptotic behavior of the total cross-section of that process:

σtot ∼ ImA1+2→3+4(s, t = 0) ∼ sα(0)−1, (53)

where α is the leading trajectory which can be exchanged in elastic scattering. At

high energy all total cross-sections are nearly constant with energy, which in terms

of the equation above implies that α(0) ≈ 1. However, this is not possible for meson
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trajectories, which have α ≈ 1/2, nor of any other presently known trajectories. The

trajectory with α(0) ≈ 1 is called the Pomeron, after I. Ya. Pomeranchuk.

It has been proven experimentally that the total cross-section does not vanish

asymptotically, but slowly rises with the increase of s (when s reaches the values

beyond
√
s = 200GeV). If this rise is attributed to the exchange of a single Regge

pole, then the intercept of this Reggeon must have α(0) > 1 and carrying the quantum

numbers of the vacuum.

The precise nature of the Pomeron is still obscure. We generally refer to it as a

pole. However, it is important to keep in mind that the Pomeron may be a much

more complex object and empirical construct which describes the diffractive nature

of elastic scattering and only simulates the properties of a pole at present.

The Pomeron trajectory has the internal quantum numbers of the vacuum, the

isospin, strangeness and baryon number are all zero: I = S = B = 0. This trajectory

is taken to represent the exchange of a virtual particle called the Pomeron. Particles

with the quantum numbers of the vacuum are difficult to detect, but such particles

can exist in QCD as bound states of gluons with αP(t = 0) = 1.

2.2.3 THE ODDERON

Another Regge trajectory which may play a significant role in high energy

scattering is the so-called Odderon [29], [30] and [31]. The Odderon is the C =

P = −1 partner of the Pomeron. Presently there is no evidence from experimental

data of the existence of the Odderon at low-|t|. Its existence would entail differences

between the pp and pp̄ asymptotic scattering amplitudes and cross-sections.

2.3 PHENOMENOLOGICAL MODELS OF pp AND pp̄ ELASTIC

SCATTERING

In order to understand and interpret an increasing number of experimental data

of the diffractive process at low-|t|, several phenomenological models have been

developed. Regge approach, described briefly in the previous section, tells us that

the exchange of t-channel reggeons (with the Pomeron as the leading singularity),

determines the asymptotic behavior of the cross-sections in the direct s-channel [5].

Other available phenomenological models, that are going to be explained in this

section, have been successful, both quantitatively and qualitatively, in the description

of various features of the diffraction process, i.e. cross-section energy dependence,
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the diffractive slope and diffractive minima in the experimental data, ρ-parameter

etc.

In general, the phenomenological models can be divided into two groups, t-channel

and s-channel models. The Regge model (see Section 2.2), is a prototype of the

so-called t-channel models and the optical models, or in other words eikonal models,

belong to the class of so-called s-channel models. Both approaches are vastly used in

the phenomenological description of the data and both have merits and shortcomings.

None, so far, has been able to combine and unify various qualities of these two

approaches. Many attempts have been made to construct channel independent

model, but none with success.

This section is dedicated to the conceptual reviews of the traditional

phenomenological models. Some of these phenomenological models are: Geometrical

(Optical) models, proposed by Yang et al [32], [33], and Cheng et al. [2], the Impact

Picture Model by Bourrely, Soffer and Wu [34], [35], [36], and Multiple Exchange

Model by Donnachie and Landshoff [37], [38], [39].

2.3.1 THE GEOMETRICAL MODEL

The geometrical model is based on the idea of diffraction phenomena, borrowed

from optics. Although two fields appear distant from each other, the analogy

between optical and quantum mechanical diffraction is complete in the case of elastic

scattering, where the internal structure of the interacting particles does not come into

play. Similarities and differences between optical and hadronic diffraction are nicely

presented in [5].

Yang et al. [40], [41], [42], [43], use a geometrical model to predict the existence of

many diffraction dips in high energy hadron-hadron elastic scattering. In their model,

the cross-sections are written following the eikonal formalism [5]. The starting point

is the remark that high energy scattering is the shadow of absorption. Accordingly,

the interacting hadrons are viewed as extended objects made of hadronic matter

flying through each other, Fig. 5. At each point, the interaction is proportional

to the local density of hadronic matter, assumed to have a distribution similar to the

electric charge distribution [5]. The opacity is taken to be real so that the amplitude

is purely imaginary. It is factorized as:

Ω(s, b) = K(s)D(b), (54)



22

FIG. 5. Two hadrons colliding, at an impact parameter b (not to be confused with

forward slope B(s, t = 0)). Due to their, near the speed of light velocity, the hadrons

are contracted to thin disks. An analysis of the proton-proton cross-section suggests

that high-energy protons are black disks.

where K(s) is the energy-dependent quantity and a free parameter of the model,

fitted to the σtot data and D(b) is related to the form factors of the colliding particles

and is obtained as follows:

D(b) =

∫
d2b′TA(b− b′)TB(b′), (55)

where T (b) is related to the charge density ρ(b, z) of the hadron by T (b) =∫ +∞
−∞ dzρ(b, z) and A and B are the two hadrons. By introducing the form factors of

A and B hadrons:

GA,B(q2) =

∫
d2be−iq·bTA,B(b), (56)

D(b), which depends only on b ≡ |b| is given by:

D(b) =

∫
d2q

(2π)2
e−iq·bGA(q2)GB(q2). (57)

An indication of the geometrical model of Yang et al. [44] is the appearance of

the diffraction pattern in the elastic cross-section with secondary maximum and a

sharp minimum. The |t| value of the minimum is proportional to 1/σtot and the

forward slope B(s, t = 0) to σtot. This model also provides a connection between
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σtot, the ratio σel/σtot and the value of dσ/dt at the second maximum, supported by

the experimental data. However, the question that has not been answered by the

geometrical approach is the s-dependence of the observables.

2.3.2 THE IMPACT PICTURE MODEL

An attempt to incorporate s-dependence derived from a perturbative

field-calculation into the geometrical model was made by Bourrely, Soffer and Wu

[35], [36], [45]. In their impact picture model, the opacity is of the same form as in

Eq. (54), apart from an additive subleading term, and the function K(s) is taken

from [46], [47], [48]. The asymptotic behavior of the scattering amplitude they found,

is:

s1+ε (lns)−3/2, (58)

where ε is a positive quantity which depends on the theoretical coupling constant.

K(s) has the crossing symmetric form of:

K(s) =
sa

(lns)b
+

ua

(lnu)b
, (59)

where a and b are constants and u is the third Mandelstam variable. The fact that

a and b are constants implies that the Pomeron is a fixed Regge cut rather than a

Regge pole. D(b) is the same as given in Eq. (57). The impact picture model predicts

that asymptotically σtot, σel and B(s, t = 0) should all increase as ln2s and that the

ratio σel/σtot should approach 1/2, which is in agreement with experimental data. A

schematic representation of the expanding proton in the impact picture is described

with almost completely absorbing (ie. black) proton core which has a radius that

grows with lns and the peripheral region, which is partially absorbing (i.e. gray) and

has a width independent of s (see Fig. 6). A complete account of this theory can be

found in [2].

2.3.3 MULTIPLE EXCHANGE MODEL

Processes at high energies and low-|t| are believed to be controlled by single

Pomeron exchange [38]. The Pomeron couples to the quarks like the photon with

more or less constant µ-coupling but with a Regge signature factor which gives it

an even C-parity, as observed by Landshoff and Polkinghorne [49]. The multiple

exchange model for high energy scattering, proposed by Donnachie and Landshoff
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FIG. 6. Schematic representation of expanding proton [2].

[37], is based on the idea that pp and pp̄ scattering at high-|t| proceeds via the

exchange of three gluons which couple to the proton or antiproton valence quarks,

Fig. 7. The amplitude of this process has opposite signs for pp and pp̄, which also

explains the difference between pp and pp̄ data in the dip-shoulder region. This model

predicts no secondary minima in pp at high-|t|.

FIG. 7. The triple-gluon exchange in pp and pp̄ elastic scattering.
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Donnachie and Landshoff use six types of exchanges in their model:

Single-Pomeron (P) exchange, double-Pomeron (PP) exchange, and triple-Pomeron

(PPP) exchange. Then, Reggeon (R) exchange, Reggeon-Pomeron (RP) exchange,

triple-gluon (ggg) and exchange of a Pomeron plus two gluons (Pgg). For details on

these exchange mechanisms see Ref. [37].

2.4 OVERVIEW OF pp AND pp̄ ELASTIC SCATTERING

Elastic scattering has been studied in pp and pp̄ collisions at the CERN

Intersecting Storage Ring (ISR), Tevatron at FNAL and RHIC at BNL, see Table 1.

At CERN’s ISR, the highest cms energy in pp collisions is at
√
s = 62.8 GeV with

unpolarized beams and at
√
s = 20 GeV with polarized beams. The pp̄ collisions have

been studied at
√
s = 53 GeV, also at the CERN ISR, and at

√
s = 1.8 TeV at the

Tevatron (FNAL). On the other side, RHIC (BNL) provides a unique opportunity

to cover a previously unexplored cms energy range (50− 500 GeV) for the study of

polarized pp collisions.

TABLE 1. Overview of pp and pp̄ elastic scattering experiments.

Collider Type Center of Mass

Accelerator of Energy

Facility Experiment
√
s

ISR at CERN pp collisions (unpolarized) 62.8 GeV

ISR at CERN pp collisions (polarized) 20 GeV

ISR at CERN pp̄ collisions 53 GeV

Tevatron at FNAL pp̄ collisions 1.8 TeV

RHIC at BNL pp collisions (polarized) 50− 500 GeV

LHC at CERN pp collisions (unpolarized) 7− 14 TeV

Physics motivation behind all these experiments is the measurement of both

spin-averaged and spin-dependent observables in elastic and inelastic processes:

- Spin-averaged Observables in Elastic Scattering: The differential elastic
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cross-section dσel/dt, the total cross-section σtot, the nuclear slope parameter B

and the ratio of the real to imaginary part of the forward scattering amplitude

ρ.

- Spin-dependent Observables in Elastic Scattering: The analyzing power

AN , the double spin correlation parameters ANN , ASS and ALL (with transverse

and longitudinal beam polarization) and the difference in the total cross-section

as a function of initial transverse spin states ∆σT = σ↑↓tot − σ
↓↑
tot.

2.4.1 ELASTIC CROSS-SECTIONS

Elastic events at hadron colliders are identified by the detection of two,

back-to-back particles in the final state. The difficulty is that scattering angles,

of the order of fractions of mrad, get smaller and smaller with the increase of energy.

Hence, detectors need to be placed very close to the beam, inside the beam pipeline.

In order to achieve this, a device known as “Roman pot” is used [50]. The detectors

are placed into the Roman pots which are normally left in a retracted position so that

the beam, when injected, circulates freely inside the beam vacuum pipeline. When

the desired energy has been achieved and the beam is stable, the Roman pots are

slid into their operational position until the inner detectors are just a few millimeters

from the beam. The detectors which are inserted into Roman pots are designed to

accept a high particle rate and have good spatial resolution (about 100µm). The

types of detectors which are usually inserted into Roman pots are drift chambers,

hodoscopes, scintillating fibers or silicon micro-strip detectors (see Section 3.5.1).

Hadron collider experiments usually require the highest possible luminosity and

therefore the transverse size of the beam is reduced as much as possible at the

interaction point. In this case, the beam size at the detection point for elastically

scattered protons is large, the angular beam divergence of the beam is increased

and a large fraction of elastically scattered particles are not accessible for detection.

Contrary to this, in the case of elastic scattering experiments, the beam size at

the interaction point is made relatively large and, consequently, the luminosity is

reduced. This is not a problem for elastic scattering experiments since the differential

cross-section is large at low-|t|. The elastically scattered protons, however, are now

well separated from the narrow beam at the detection point.

The ratio of integrated elastic to the total cross-section is known to decrease at
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low energies and reach a constant value. The measurements for pp are quite precise,

contrary to pp̄ data, which are not as accurate, but compatible with the pp data

within errors. This constancy is a prediction of the geometrical model (see Section

2.3.1). However, at higher energies, the ratio σel/σtot increases with energy (Fig. 8),

which is not only a strong argument against this model, but can be also be taken as

evidence that hadrons become more and more opaque with the increase of energy.

The growth of σel/σtot with energy is in agreement with various models such as Cheng

and Wu [2] and Bourelly, Soffer and Wu (see Section 2.3.2).

FIG. 8. The ratio of σel/σtot as a function of the
√
s. The dashed line shows the

ratio of the σel(s) and σtot(s) fits from [3].

2.4.2 THE TOTAL CROSS-SECTION

The exact growth of the total cross-sections with energy is a puzzle that many

tried to resolve. It has been present for nearly forty years now. Initially, it was

believed that the total cross-sections would become asymptotically constant. This

turned out not to be the case and the very first evidence of total cross-section growth

with energy came from preliminary results of the Serpukov accelerator on π±p and
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K±p scattering at pL ∼ 60 GeV [5]. This observation was confirmed for both, pp

and pp̄, total cross-sections by the ISR and FNAL experiments [51], [52]. These data

were compatible with the asymptotic equality of σtot(pp) and σtot(pp̄) predicted by the

Pomeranchuk theorem, [24]. The growth of σtot(pp̄) became macroscopically visible

from SPS data at
√
s = 0.546 TeV and

√
s = 0.90 TeV, [53], [54], [55], and with the

Tevatron data at
√
s = 1.8 TeV, [56], [57], [58]. The pp and pp̄ total cross-section

data are presented in Fig. 9 together with a fit to a lnγs, [5]. This growth is discussed

in Section 2.3 as evidence that the proton becomes larger and blacker as seen by an

incoming hadron of increasing energy.

The exact growth of σtot(pp) and σtot(pp̄) with energy is both delicate and

FIG. 9. Total pp and pp̄ cross-sections fitted to a lnγs behavior [3], [4].

unresolved. An approximate lnγs (γ = 2.2 ± 0.3) is suggested, which saturates the

energy growth permitters by the Froisart-Martin bound, [5]. Phenomenologically,

the uncertainties of the data do not dismiss the possibility of an lns growth (note the

discrepancy between the two Tevatron measurements at
√
s = 1.8 TeV). Cosmic ray

data do not lead to a conclusion regarding the increase [59], [60] and the E710 result

tends to favor a lns increase, while CDF result favors ln2s dependence. The TOTEM
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collaboration at LHC measurements of σtot at
√
s = 7 TeV [3] and

√
s = 8 TeV [4],

are both in good agreement with the extrapolation of the lower energy measurements.

At
√
s = 14 TeV at the LHC, the difference between the lns and ln2s fits is about

15 mb.

The available data for σtot(s) for both pp and pp̄ can also be fitted successfully by a

mild power dependence [9]. However, to distinguish between power and ln2s growths

one needs to measure at very high energies, which is hard to achieve. Similarly, the

combination of a lns+C term is also indistinguishable from a combination containing

a ln2s term. From the physics point of view, any power behavior, taken at face value,

would violate unitary and, consequently, should be modified. On the other hand, no

such argument exists against any lnγ s behavior as long as γ < 2.

According to the Pomeranchuk theorem, [24], σtot(pp) and σtot(pp̄) become equal

at asymptotic energies (present data can be used if they were already assymptotic).

The power law fit to the difference between σtot(pp) and σtot(pp̄) gives ∆σtot ∼ s−0.56,

which is in agreement with the theoretical predictions by Regge theory. In fact, the

Pomeron contributions cancel out in the σtot(pp) and σtot(pp̄) difference an the ∆σtot

is dominated by a secondary Reggeon trajectory with an intercept close to 1/2.

However, this is not quite so conclusive since maximum energies obtained for both

σtot(pp) and σtot(pp̄) data are in the ISR range (
√
s ' 62 GeV). Unfortunately, at

the time being, there are no plans for extending this energy range at LHC or RHIC.

2.4.3 THE REAL PART OF THE FORWARD ELASTIC AMPLITUDE

As described in section 2.1.3, the optical theorem gives the relation between total

cross-section and imaginary part of the forward scattering amplitude [5]. It tells us

that the imaginary part of the forward amplitude incases with energy, Eq. (22), while

no such constraint exists for the real part. The measurement of the real part of the

forward scattering amplitude, which in turn is complementary to the measurement

of the total cross-section, is directly related to the measurement of the ρ-parameter.

In addition, ρ is a very sensitive indicator of several theoretical properties.

The ρ dependence on energy is shown on Fig. 10. In the region where the total

cross-section is first decreasing with energy and then rising, ρ, which is initially

negative, will rise, going through zero when the cross-section has a minimum and

becoming positive at high energy.
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FIG. 10. The ρ parameter for pp (black circles) and pp̄ (white circles) as a function of

the energy. The solid line represents the dispersion relation fit with the 1σ uncertainty

region determined by the dashed lines [5].

Experimentally, the measurement of ρ(s) is performed by observing the

interference of the hadronic amplitude Fh, parameterized as in Eq. (33) in the

low-|t| region, with the known Coulomb amplitude which is given with Eq. (29).

Coulomb scattering becomes dominant at low-|t|, and the two amplitudes become

comparable, Eq. (41). At present energies, t0 ∼ 10−3 GeV2, which is the region where

the measurement of the real part of the amplitude is possible. At this |t| range, |Fh|2

can be neglected and the interference term is proportional to (ρ±αemφ). The relative

phase was first calculated by Bethe (1958) in a potential scattering model [61], and

later investigated by many authors [62], [63].

2.4.4 THE FORWARD PEAK

The high energy t-distribution shows a pronounced diffraction peak (forward

peak). Theory and data show that the slope of the diffraction peak depends on

s. In natural units, the slope of a diffraction peak has units of length2 which

suggests that there is a relation between this quantity and the hadron size or,

equivalently, the total cross-section, with the expectation to with grow energy as
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(lns)γ. And indeed, the data show this growth of B with energy, Fig. 11. The

FIG. 11. Current World data on the nuclear slope of the forward peak B. A growth

of B is observed with the increase of cms energy [5].

solid line in Fig. 11 represents the Regge prediction of the growth of B(s). In the

high-s region, it is represented as a straight line with a slope given by the Pomeron

slope B(s) = B0 + 2α′P lns. From this figure it can be estimated that the value of

α′P ≈ 0.25 GeV−2, which is in a good agreement with other estimates.

The only direct high energy comparison between pp and pp̄ slopes in the diffraction

region is at ISR energies [64]. The ratio B(pp̄)/B(pp) decreases towards 1 as the

energy increases and reaches unity at approximately 62 GeV. The overall diffraction

peak at |t| < 0.5 GeV2 is not described by simple exponential. For |t| > 0.02 GeV2

the slope B(s) is found to decrease which is visible in both ISA [65] and SPS [53],

[54]. At 0.2 < |t| < 0.3 GeV2 the slope is below |t| ' 0 for about two units of GeV−2.

Contrary to this B(s) behavior, the Tevatron data [56], [57] show no evidence of B

decreasing with |t|. However, this decrease is accounted for by various models such

as Bourely, Soffer and Wu (see Section 2.3.2), [36], [66], [67].
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CHAPTER 3

EXPERIMENT

3.1 RELATIVISTIC HEAVY ION COLLIDER (RHIC)

The Relativistic Heavy Ion Collider (RHIC) is an accelerator facility at the

Brookhaven National Lab (BNL) on Long Island, New York. Its main goal is to

provide collisions of heavy ions (i.e.197Au) and lighter ions all the way to protons

(including polarized protons) at energies of up to 100 GeV/c per beam for the heavy

ions, and up to 250 GeV/c for unpolarized or polarized proton beams [68]. The

complete RHIC facility is a complex set of interconnected accelerators (see Fig. 12).

FIG. 12. Overall layout of the Brookhaven National Laboratory accelerator complex.
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1. The Linear Accelerator (Linac): For collision of proton beams at RHIC,

protons are supplied by the 200 MeV/c Linac. Protons from the Linac are then

transferred to the Booster Synchrotron.

2. The Booster synchrotron is a powerful circular accelerator that provides

the protons with more energy. The ions are accelerated to higher and higher

speeds, getting closer to the speed of light. The Booster synchrotron accelerates

protons to 1.5 MeV/c. The Booster then feeds the beam into the Alternating

Gradient Synchrotron (AGS).

3. Alternating Gradient Synchrotron: The AGS is filled with proton

bunches previously accelerated in the Booster. The bunches are then

accelerated further to 24 GeV/c.

4. RHIC: The RHIC is an intersection storage ring particle accelerator. It

consists of two independent concentric accelerator/storage quasi-circular rings

of superconducting magnets, each with a circumference of 3.8 km. One

ring is called the Blue Ring, where the beam moves in a clockwise direction

and the other one is known as the Yellow Ring, where the beam moves in

a counter-clockwise direction. The rings share a common horizontal plane

inside the tunnel, with each ring having an independent set of bending and

focusing magnets as well as radio frequency acceleration cavities. This allows

independent tuning of the magnetic fields in each ring which is required to

achieve equal rotation frequencies of the different particle/ion species in each

ring. In RHIC, the counter-rotating proton beams are accelerated up to an

energy of 250 GeV/c per beam and can be collided at six interaction regions

(IR). The IRs are spaced equidistant around the circumference, separated by

arc sections (Fig. 12).

Presently, there are two active experiments at RHIC positioned in the 6 o’clock and

8 o’clock IRs. One of those two experiments is the STAR experiment [69] (located at

the 6 o’clock IR of RHIC). The Physics With Tagged Forward Protons At The STAR

Detector experiment is part of the STAR experimental program [70].
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3.2 THE STAR DETECTOR

STAR [71] is one of the two presently active detectors, located at the 6 o’clock

interaction region. The physics motivation behind STAR is to investigate the

behavior of strongly interacting matter at high density and to search for the

signatures of quark-gluon plasma (QGP). STAR was designed for measurements of

hadron production over a large solid angle. It incorporates high precision tracking

systems for particle identification at the central rapidity region. It measures

many observables simultaneously in search of a possible phase transition from

hadronic matter to QGP and studies space-time evolution of the collision process in

ultra-relativistic heavy ion collisions. In addition, apart from its heavy ion program,

STAR has an active spin physics program oriented towards the study of the nucleon

spin structure and a program with tagged forward protons (see Section 3.3) for the

study of the spin-dependent and spin-averaged observables in pp elastic scattering

and central production at very low-|t|. For the purpose of its program with forward

protons, STAR has an additional system of forward detectors called the Roman pots

(see Section 3.4).

The STAR detector with its subsystems (other than the Roman pot (RP)

subsystem) is shown in Fig.13. The entire detector is enclosed in a solenoidal

magnet that provides a uniform magnetic field of maximum value 0.5 T parallel to

the beam direction. This feature allows measurements of the momenta of charged

particles. At the heart of the STAR detector is the Time Projection Chamber

(TPC) which is used for charged particle tracking and particle identification.

The TPC covers a pseudo-rapidity range of |η| ≤ 1.8 with complete azimuthal

coverage. In order to extend this coverage to the forward region, two Forward Time

Projection Chambers (FTPC) are installed which extend pseudo-rapidity coverage

to 2.5 ≤ |η| ≤ 4 on either side of the TPC in forward and backward rapidity,

also with full azimuthal coverage. A barrel Time-of-Flight (TOF) detector is also

installed in STAR and it consists of 120 trays covering the range of |η| ≤ 0.9 in

full azimuthal coverage. The TOF trigger system has two Pseudo Vertex Position

Detectors (upVPD), each located 5.7 m away from the TPC center along the beam

line providing the start time information to it. The full Barrel Electro Magnetic

Calorimeter (BEMC) and End-cap Electromagnetic Calorimeter (EEMC) are used

for detection of charged particles covering |η| < 1 and 1 ≤ |η| ≤ 2 respectively.

Calorimeters include Shower-Maximum Detectors (SMD) for distinguishing between
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deposited energy from a single photon or from photon pairs arising from neutral

pion (π0) or |η| meson decays. For detecting photons at forward rapidity, the Photon

Multiplicity Detector (PMD) is used. This detector covers a pseudo-rapidity range

−3.7 < η < −2.3 with full azimuthal coverage.

FIG. 13. Cross-sectional view of the STAR detector.

As previously mentioned, the STAR detector has a set of Roman pot (RP)

detectors located in the very forward direction, about sixty meters away from the

IP. The Roman pots are used as a part of the STAR physics program with tagged

forward protons, explained in the following section.
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3.3 PHYSICS WITH TAGGED FORWARD PROTONS AT THE

STAR DETECTOR

“Physics With Tagged Forward Protons At The STAR Detector” experiment

(formerly known as the pp2pp experiment [70]) is designed to study elastic

proton-proton (pp) scattering at the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory (BNL). One of the objectives of this experiment is

the study of differential cross-sections and polarization effects in pp elastic scattering

by using both unpolarized and polarized proton beams at all center of mass energies

available at RHIC, 50 ≤
√
s ≤ 500 GeV, in the four momentum transfer squared

range of 0.003 ≤ |t| ≤ 0.03 (GeV/c)2. With unpolarized proton beams, the focus of

this experiment is on the differential elastic cross-section together with the nuclear

slope parameter B of pp elastic scattering and their dependences on
√
s and t.

Moreover, the total elastic cross-section and the ratio of real to imaginary part of the

hadronic scattering amplitude, the parameter ρ, are of great interest and importance.

Elastic events are identified by detecting two, and only two, back-to-back

scattered particles in the final state. In the case of pp collisions, the two colliding

beams have the same energy and very small cross-section. The difficulty is that

the higher the energies of the incoming beams, the smaller the scattering angles so

there is a need for retractable detectors called Roman pots [50], which can reach the

positions very close to the beam inside the beam pipe.

3.4 ROMAN POT DETECTOR SYSTEM

Roman pots are cylindrical vessels that house the detector system isolating it from

the high vacuum of the accelerator beam pipe [50]. The name Roman was chosen

because this technique was first used by a CERN group from Rome in the early

1970s to study pp collisions at CERNs intersecting storage rings (ISR). The pots are

connected to the vacuum chamber of the collider by bellows, which are compressed

as the pots are pushed towards the particles circulating inside the vacuum chamber.

In their retracted position, the Roman pots do not obstruct the beam, leaving the

aperture of the vacuum chamber free for the beams during their injection and ramp.

Once the beams are brought into collision, the Roman pots are moved inside the

beam pipe as close as a few mm to the beam, without disturbing the stability of

the circulating proton beams. Thus, the Roman pots are moved during operation,

approaching the detectors close to the beam and enabling detection of forward



37

scattered particles, while the detectors remain isolated from the beam vacuum.

The windows of the Roman pots are made of stainless steel with a thickness of

300 µm. The thin stainless steel minimizes the material through which the proton

passes, but must maintain its strength, preserving the beam pipe vacuum, in the

event the proton beam is accidentally dumped directly into the pot. As the interior

of the pot is at atmospheric pressure and the exterior is exposed directly to the beam

vacuum, the window frame serves to prevent the thin window from deforming into

the beam.
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FIG. 14. Roman Pot detector system layout [6].

The layout of the “pp2pp at STAR” experiment consists of a total of four

RP stations, two horizontal and two vertical RP stations [6]. These stations are
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symmetric with respect to the STAR interaction point (IP) and are positioned on

both sides of the STAR IP at 55.5 m and 58.5 m along the outgoing beam pipeline.

One station consists of two RPs on opposite sides of the beam (see Fig.14). Each of

the RPs in the system houses a single detector package which consists of four silicon

micro-strip detector layers (two X-view and two Y-view), one scintillator which is

connected to two photo multiplier tubes (PMTs), detector assembly structure and

temperature measuring system. Two of the silicon micro-strip detector layers (X-view

detectors) measure the x-coordinate in horizontal RP stations and y-coordinate in

vertical RP stations. The other two silicon micro-strip layers (Y-view detectors)

measure the y-coordinate in horizontal RP stations and x-coordinate in vertical RP

stations. X-view detectors consist of 756 micro-strips and Y-view detectors have 504

active micro-strips.

FIG. 15. Components of the “pp2pp at STAR” Roman pot detector system: Roman

pot housing.
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FIG. 16. Components of the “pp2pp at STAR” Roman pot detector system: Roman

pot detector station (vertical).

SVXIIE chips are used for the readout of the silicon micro-strip detectors [72].

Each SVXIIE chip reads signals from 128 strips (126 active) of the silicon micro-strip

detector. X-view detectors have six SVXIIE chips and Y-view detectors have four.
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FIG. 17. Components of the “pp2pp at STAR” Roman pot detector package: Roman

pot detector package assembly.

FIG. 18. Components of the “pp2pp at STAR” Roman pot detector package: Roman

pot detector package boards.
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3.5 SILICON MICRO-STRIP DETECTORS

Silicon micro-strip detectors have a special place in experimental particle physics

[7] for many reasons, especially due to the properties of the silicon material. The

relatively high density of silicon is one of the essential properties of this material that

allows highly precise position measurements if used for tracking detectors (even less

than 10 µm). Very good mechanical properties (i.e. elasticity), very well developed

manufacturing technology and affordability of silicon are the main reasons of their

wide spread use in various experiments.

The basic idea of silicon detectors is based on p-n junction diodes which are

made from a junction of p-type (positive-type) and n-type (negative-type) silicon.

A p-type junction is made by doping silicon crystals with boron (which has three

valence e−). p-type material has holes as its majority charge carriers. On the other

hand, n-type material is made by doping pure silicon crystals with phosphorus (five

valence e−), which leaves excess electrons in the material. Those electrons became

majority charge carriers of n-type material. The number of majority carriers in the

material, which is determined by doping concentration, determines the resistivity (or

conductivity) of the material [73].

3.5.1 PHYSICAL DESCRIPTION AND PROPERTIES OF SILICON

MICRO-STRIP DETECTORS

A silicon micro-strip detector is constructed by implementing thin strips of highly

doped p-type silicon over an n-type silicon wafer. The backplane of the wafer is made

of a thin layer of aluminum. This is done for protection and ensures good electrical

conductivity along the backplane. At the end of each silicon p-type micro-strip there

is an implanted resistor. The top surface of the silicon wafer is layered with a thin

layer of SiO2 glass, which is an excellent insulator. Aluminum strips run above and

along the length of p-type micro-strips. Together they create a series of capacitors. A

silicon micro-strip detector cross-sectional view is shown in Fig. 19. Each Al strip is

connected to charge-integrating preamplifiers which are implemented in the SVXIIE

readout chips. A thin Al ring (a guard ring) surrounds all the strips in the detector

and is used to eliminate edge-related leakage current from the rest of the detector.

Key parameters of silicon micro-strip detectors are the spacing between two

consecutive micro-strips (strip pitch) and the detector capacitance. The pitch of the
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FIG. 19. Silicon micro-strip detector cross-sectional view [7].

micro-strip detectors in the “pp2pp at STAR” experiment is 100 µm [7]. With this

pitch, the spatial precision of these silicon micro-strip detectors is expected to reach

100/
√

12µm' 28.8 µm. 1/
√

12 is the sigma of the uniform probability distribution.

This calculation is based upon the assumption that all of the charge created in the

vicinity of the strip is solely collected by that strip. In reality, however, this is not the

case and the charge sharing between two consecutive micro-strips is highly probable.

In the case of minimum ionizing particles, the number of created charges is, in

general, small so the space charge effects that tend to expand the charge cloud are

small as well. In this case, the charge cloud does not expand more than 1 µm.

On the other hand, in the case of highly ionizing particles, the number of charges

created is high, as are the space charge effects in the charge cloud. In this case, it

is expected that the charge drift effect is large, which makes charge sharing between

two consecutive micro-strips almost inevitable. However, by shortening of the drift

time this problem can be easily solved. This is accomplished by over-depleting the

detector and creating a smaller resistivity in the silicon bulk. Consequently, charge

diffusion effects in the “pp2pp at STAR” experiment can be neglected with high

confidence.

Sharing of the charge between two consecutive silicon micro-strips also depends

on the impact angles of ionizing particles and widths of the micro-strips. In our

experiment, due to very small scattering angles of the scattered particles of interest

(high energy protons), it is expected that their trajectories are almost perpendicular

to the silicon planes of the detectors. However, the micro-strips are still wide enough

so the charge sharing between two strips is still possible to occur. This effect is

carefully studied in Chapter 5.1.4. Charge sharing can be used to improve the
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position resolution of the detected particles by weighting the individual strip positions

with the collected charge by the strips.

The total detector capacitance depends on the thickness of the silicon bulk, the

thickness of the oxide layer and the dimension of the micro-strips (length, width).

The thickness of the silicon bulk in the “pp2pp at STAR” experiment is 400 µm,

thickness of the oxide layer is about 100 nm. The width of the p-type strips is 70

µm and the width of Al strips is 72 µm. Therefore, the gap between two consecutive

strips is 30 µm. The length of the silicon strips is about 80 mm in Y-view detector.

This is summarized in Table 2.

TABLE 2. Parameters and dimensions of the Si micro-strip detectors.

Strip width 70 µm

Strip pitch (x-plane, center to center) 97.4 µm

Strip pitch (y-plane, center to center) 105 µm

Resolution = Strip pitch/
√

12 ∼ 29 µm

SiO2 layer 100 nm

p+ width 70 µm

Al width 72 µm

Wafer thickness 400 µm

Cwafer 600 pF/µm depletion

Cinterstrip 2 nF

Ccoupling ∼ 2 nF

Two different capacitors, the capacitor formed by the n-type backplane and

p-type strip (Cwafer) and the capacitor formed by p-type strip and Al strip (Ccoupling),

contribute to the total capacitance of the detector, see Fig. 19. These two capacitors

are approximated to be in series, hence the overall detector capacitance can be

determined by their equivalent capacitor. Ccoupling is calculated to be about 2000 pF

and Cwafer about 1.7 pF which is rather small compared to Ccoupling. Therefore, the

total detector capacitance will be mainly dominated by Cwafer. In order to decouple
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neighboring strips from each other, Ccoupling capacitance is required to be much larger

than the capacitance between two consecutive strips, Cinterstrip. In other words, the

bigger the Ccoupling capacitance, the better the charge induction in the Al strip.

3.5.2 PARTICLE DETECTION USING SILICON MICRO-STRIP

DETECTORS

As previously explained, when a charged particle passes through a thin silicon

layer, it looses energy through ionization. This energy loss can be described by the

Bethe-Bloch formula [74]. According to this formula, at relativistic energies, this loss

can be considered as constant. Therefore, the energy loss is approximately the same

for any particle with relativistic energies.

Energy loss (stopping power) in micro-strip detectors follows a Landau

distribution [74]. The most probable energy loss in a thin 400 µm layer of silicon is

about 118 keV. In silicon, it takes on average 3.6 eV to create one electron-hole pair.

Therefore, a high energy proton will create around 8,200 electron-hole pairs per 100

µm of silicon. The charge equivalent to this is about 1.31 fC which gives around 5

fC signal to be collected by p-type micro-strips, as shown in Fig.20. This will be

studied in detail in Chapter 5.

FIG. 20. Signal creation and collection in silicon micro-strip detector [7].
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3.5.3 PROBLEMS AND DRAWBACKS OF SILICON MICRO-STRIP

DETECTORS

A few problems can be encountered when silicon micro-strip detectors are used.

The first among them is damage due to radiation. This is a general problem with all

silicon detectors. High radiation can cause displacement of atoms at their lattice site

which changes doping concentration in the silicon bulk. This leads to an increasing

leakage current. Also, it can cause surface damage due to charge build up at

the surface layers which can cause an increase of the surface leakage current and

effect inter-strip isolation. In addition, it can cause ineffective biasing and therefore,

non-uniform electric fields inside the bulk.

The second drawback with silicon micro-strip detectors is an unreliable oxide

layer. This oxide layer can break if the voltage difference applied across it is larger

than 10 V. However, this is not a problem for our silicon micro-strip detectors.

Inter-strip capacitance is, also, one of the problems that can occur. As previously

stated, the coupling capacitance has to be greater than the inter-strip capacitance.

If this is not the case, fake signals could be observed in the neighboring strips of the

hit micro-strip. Our system is checked for this and no such effect was detected.

The external electric field of the accelerator environment can cause charge

induction on the Al strips leading to surface charge currents. External magnetic fields

can cause unexpected deflections in the trajectory of the particle passing through the

silicon detector, disturbing the spatial measurement precision. Because of this, the

detectors should be protected from external fields.

The silicon detectors used in the “pp2pp at STAR” experiment are designed with

a small cutting edge of 500 µm. This is the distance to the first strip closest to the

beam, and it is minimized for detecting particles with as small as possible scattering

angles. However, the cutting edge of the silicon can be a source of leakage current,

which can affect nearby strips. To prevent this effect a guard/bias ring is used around

the strips, to serve as a leakage current drain and minimize the inactive area. More

details on drawbacks of silicon micro-strip detectors can be found in [7], [74], and

[73].
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3.6 THE READOUT SYSTEM

The readout system of the silicon micro-strip detectors consists of 160 SVXIIE

chips. The SVXIIE chip is a 128 channel device, developed by a collaboration of

engineers at FNAL and LBNL [72]. The chip was designed to meet the requirements

for both CDF and D0 experiments at FNAL. The SVXIIE chip features a 32-cell

analog pipeline, programmable test patterns, downloadable settings for ADC ramp,

pedestal, bandwidth and polarity [7]. The SVXII chip is designed for daisy chained

operation with silicon strip detectors, to reduce the number of control and readout

connections in a multi-chip system [7]. The major characteristics and features

SVXIIE chip are:

- 128 channels per chip.

- Designed to accommodate beam crossing time from 132 ns to 396 ns.

- Separate acquisition and readout cycles.

- Double correlated sampling.

- Large dynamic range.

- Programmable depth analog pipeline (32 cell maximum depth per channel).

- Digitization of analog signals to 8 bits of resolution.

- Data sparsification (zero suppression).

- Neighbor channel readout selection.

- Low noise (S/N=10 to 20:1).

- Low power dissipation (approximately 350 mW/chip).

- Operation compatible with doubled sided AC coupled detectors.

- Separate test input for each channel.

- Daisy chain operation capability.

- Parallel bus data readout.
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- Numerous programmable internal registers (chip ID, preamp risetime, threshold

level, etc.).

For details on design and operation of SVXIIE chips refer to [7].

3.7 MEASUREMENT TECHNIQUE

The incoming beams collide at the interaction region in a local coordinate system

at a vertical distance x and y from the reference orbit and are scattered with polar

angle θ. The common nomenclature is that the z-axis has been chosen to be the

beam axis (usually denoted as the s - axis), while the remaining x and y axes are

transverse to the beam (in the following text denoted as the “ξ”), and ϕ is the

azimuthal scattering angle.

Due to small scattering angles, the scattered particles travel inside the beam pipes

after the beams collide. They follow trajectories determined by transport matrices

of the magnet system until they reach the Roman pot detectors. As previously

described, the Roman pots measure the positions of the scattered particles with

respect to the reference orbit. Consequently, the parameters of the accelerator lattice

can be used to determine the scattering angle θIPξ , and the deflection in the transverse

direction ξIP , at the interaction point. The angle ϕIPξ between transverse ξ and the

scattering plane is arbitrary. Therefore θIPξ = θIP sinϕIPξ .

The motion of the particle in the accelerator is given with the so called Hill’s

equation [75],
d2ξ

ds2
+K(s)ξ(s) = 0, (60)

where the K(s) from this equation is determined by the accelerator lattice.

The harmonic solution of Eq.(60):

ξ(s) = A
√
β(s) cos (Ψ(s) + λ) (61)

gives the transverse displacement as a function of the position (for arbitrary A

amplitude and λ) along the s-axis (the accelerator axis). Ψ(s) is the phase given

in terms of the beta function β(s) as

Ψ(s) =

∫ s

s0

ds′

β(s′)
. (62)

On the other hand, the angle of the particle trajectory, with respect to the s-axis,
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is given as the derivative of the transverse displacement ξ:

θξ(s) ≡
dξ

ds
= − A√

β(s)
[α(s) cos (Ψ(s) + λ) + sin (Ψ(s) + λ)], (63)

where α(s) is the derivative of betatron (beta) function β(s),

α(s) = −1

2

dβ

ds
. (64)

The values of the transverse displacement and the angle of the particle trajectory

at the detection point, ξ(s), and θξ(s) respectively, are related to corresponding

variables at the interaction point, ξIP (s), and θIPξ (s), by:[
ξ

θξ

]
=

 √ β
β∗

(cosΨ + α∗ sin Ψ)
√
ββ∗ sin Ψ

(1+αα∗) sin Ψ+(α∗−α cos Ψ)√
ββ∗

√
β
β∗

(cosΨ− α sin Ψ)

[ ξIP

θIPξ

]
, (65)

where β is the betatron function, and β∗ is its value at the IP (β∗ = β(s = 0)), α∗

is the derivative of the betatron function β∗ at the IP , and Ψ is the phase advance

from IP. These parameters are sometimes called twiss parameters of the lattice.

In order to measure the scattering angle of the protons, the angle has to be larger

than a minimum value denoted as the angular spread of the beam at the IP given

by:

σθIPξ =

√
ε

6πβ∗
, (66)

where ε is the normalized emittance. One can see that the larger β∗, the smaller the

angular spread of the beam. On the other hand, the larger β∗ the larger the beam

spot at the IP,

σIPξ =

√
εβ∗

6π
. (67)

From Eq.(65), the displacement in the transverse direction ξ at the detector can

be written as

ξ =

√
β

β∗
(cos Ψ + α∗ sin Ψ) ξIP +

√
ββ∗θIPξ sin Ψ, (68)

and simplified to

ξ = a11ξ
IP + Leffθ

IP
ξ , (69)

where

Leff ≡
√
ββ∗ sin Ψ, a11 ≡

√
β

β∗
(cos Ψ + α∗ sin Ψ) . (70)
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The experiment requires that Leff is as large as possible, and on the other hand,

a11 as low as possible in order to have the transverse displacement ξ independent of

the displacement at the IP, ξIP , and maximized for the range of scattering angles θIPξ .

This is called “parallel to point focusing”. The conditions that meet this criteria are

when
√
ββ∗ is large, and when Ψ is the odd multiple of π/2. When these conditions

are met, Eq.(68) becomes

ξ ∼= Leffθ
IP
ξ . (71)

From this equation, it is obvious that in this way the value of θIPξ is obtained just

by measuring the displacement at the detector alone.

The smallest measurable four-momentum-transfer squared tmin is determined by

the smallest scattering angle measured θIPmin, by:

θIPmin =
dmin

Leff
, (72)

where dmin is the minimum of the distance detector from the beam center, and it is

given by:

dmin = kσξ + d0, (73)

where k is an accelerator constant determined by the maximum acceptable rate,

which is optimized by beam scraping, σξ is the beam size at the detection point, and

d0 is the distance between the beginning of the sensitive area of the detector and the

beam side of the Roman pot. In our case, d0 ∼ 1.8 mm, so it is not negligible. The

smallest measurable four-momentum-transfer squared tmin is given by:

|tmin| =
k2εp2

β∗
. (74)

From this equation, one can see that in order to obtain a minimum t, the

parameter β∗ has to be as large as possible, and parameters ε, and k as low as

possible. Large β∗ is obtained by adjusting the accelerator “optics”, and low ε, and

k by careful beam scraping and collimation.
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CHAPTER 4

RUN 2009

After many weeks of successful data collection in 2009 (Run9), the STAR

collaboration dedicated its final running week to “The Physics with Tagged Forward

Protons and the STAR Detector” experiment (“pp2pp at STAR” experiment). During

this last running week, the STAR collaboration was able to measure elastic scattering

events at very high precision. In order to have such precision, the angular spread of

the beams at the interaction point had to be minimized. This is accomplished by

setting special beam optics with a large β-function, see Section 3.7. In addition, the

emittance of the beams was drastically reduced by collimator scraping. The optical

properties of the transport channel from the IP to the Roman Pot detectors was

measured by various methods. In this chapter, we report on the running conditions

of the “pp2pp at STAR” experiment during this final week of the RHIC Run9 as well

as on the equipment calibration efforts in order to obtain the most accurate data

collection and analysis.

4.1 RUNNING CONDITIONS OF THE “pp2pp AT STAR” RUN9

During the final week of the RHIC run of 2009 (Run9), the STAR collaboration

was able to record a total of 33 million elastic triggers [6]. The data were taken

during four dedicated RHIC beam stores, with special beam optics of β∗ = 22 m and

luminosity of L ' 2 · 1029cm−2s−1.

The luminosity of the beam can be calculated using Eq.(75) and Table 5:

L =
3

2

µ

β∗
(βγ)

NBN
2

ε
(75)

where β∗ is the betatron function at the IP and µ is the revolution frequency. For

100 GeV protons, γ = 106.8. NB is the number of bunches per beam, N is the beam

intensity or the number of protons per bunch and ε is the emittance of the beam.

For more on the luminosity calculation, refer to [76].

The data were collected in 45 runs during four running days, with the closest
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Roman pot approach to the center of the beam pipe at about 10 mm, Fig. 21 .

The full list of runs with all the running conditions, i.e. run numbers, number of

events taken, number and fraction of elastic events for each run and store number is

given in [77]. The list of data sets with Roman pot insertion positions is shown in

Table 3. The four momentum transfer squared t range in “pp2pp at STAR” Run9

was 0.003 ≤ |t| ≤ 0.035(GeV/c)2. A summary of the running conditions, i.e. beam

parameters, during Run9 is given in Table 5.

TABLE 3. Roman pot insertion positions (in [mm], from the beam pipe center) of

the “pp2pp at STAR” experiment during Run9. Each insert position combination

represents one data set. E - East; W - West; H - Horizontal; V - Vertical; I - Inner;

O - Outer.

Set No. WHI WHO WVU WVD EHI EHO EVU EVD

0 10.3 10.3 15.4 15.2 10.4 10.6 10.3 10.5

1 8.9 10.3 10.2 10.2 10.2 10.3 5.0 10.3

2 10.2 10.3 10.2 10.2 16.9 17.2 15.9 16.6

3 10.2 10.3 10.2 10.2 14.5 14.7 10.9 12.8

4 6.4 9.0 8.9 8.9 7.6 12.8 7.8 9.6

5 8.9 8.4 10.2 10.2 7.0 7.8 7.1 7.1

6 8.9 8.4 10.2 10.2 8.0 8.8 8.1 8.1

7 10.3 10.3 14.1 11.4 19.5 16.0 16.5 19.1

8 10.3 10.3 15.3 12.6 19.5 16.0 16.5 19.1

9 9.1 9.1 9.6 8.9 8.3 8.3 8.4 8.4

10 9.0 9.8 19.3 16.6 20.1 17.9 17.3 19.1

11 6.5 8.4 10.2 7.0 13.2 10.9 10.3 12.8

12 7.1 8.4 10.8 7.6 13.2 10.9 10.3 12.8

The set of 45 physics runs was analyzed to extract the physics of interest. This

entire set belongs to four RHIC beam stores, 11020, 11026, 11030 and 11032 (see

Table 4). Each one of these fills had the same bunch structure for both Blue and

Yellow circulating beams. Both beams had a fill structure of 120 × 120 bunches per
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TABLE 4. Beam stores (fills), data sets and runs of the “pp2pp at STAR” experiment

during Run9.

Store No. Set No. Run No.

11020 0
10181085, 10181086, 10182001, 10182002,

10182004, 10182005, 10182006

1 10182015, 10182016, 10182021, 10182025

11026

2
10183013, 10183014, 10183015, 10183016,

10183017

3 10183018, 10183020, 10183021

4 10183027, 10183028

5 10183034

6 10183035, 10183037, 10183038

11030

7 10184016, 10184017

8 10184018, 10184019, 10184020, 10184021

9 10184030, 10184031, 10184032, 10184033

11032
10

10185001, 10185002, 10185003, 10185004,

10185005, 10185006

11 10185018

12 10185019, 10185022, 10185023

beam (Blue × Yellow). However, 30 bunches were never filled in order to provide

an abort gap for the beams. Therefore, the fill structure of the four “pp2pp at

STAR” RHIC beam stores were 90 × 90 bunches per beam. 64 out of 90 bunches

per beam had useful polarization combinations where both bunches from Blue and

Yellow beams were polarized. This includes four bunch combinations, 16 ↑↑, 16 ↓↓,
16 ↑↓ and 16 ↓↑ in both Blue and Yellow beams.

The polarization pattern for the Blue beam was: − + − + + − + − ..., and for

the Yellow beam was: + + − + + − ..., with 90 × 90 bunches for Blue × Yellow.

The polarization measurement during the run was performed by the CNI Polarimeter

group at RHIC [78].

Also, the events that came from collisions of the first seven bunches were excluded

for the purpose of data analysis. The reason for this is because the timing of these
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TABLE 5. Running conditions of the “pp2pp at STAR” experiment during Run9.

Parameter Symbol Value

Beam momentum (Blue) pB 100.2 GeV/c

Beam momentum (Yellow) pY 100.2 GeV/c

Beam polarization (Blue) PB 0.60

Beam polarization (Yellow) PY 0.62

Beam intensity (No. of protons/bunch) Ibeam 5 · 1010 protons/bunch

Beam emittance ε 15π mm mrad

Betatron function at IP β∗x,y 22 m

Beam lateral width at IP σIPx,y 701.62 µm

Beam angular divergence σIPσθx,θy 33.36 µrad

Fill pattern (No. of bunches/ring, Blue×Yellow) 120 × 120

No. of filled bunches/ring, Blue×Yellow

(after excluding the abort gap in the ll pattern) 90 × 90

No. of colliding pairs 64

No. of bunches with both beams Polarized 64

No. of bunches with polarization pattern

either ↑↑, ↓↓, ↑↓ or ↓↑ for PB and PY , respectively 16

Closest approach of the RPs

to the center of beam-pipe dmin ∼10 mm ≈ 12 σbeam

bunches corresponded to the time when the preampliers of the SVXIIE readout chips

of the silicon detectors were resetting, which had to be done once per revolution of

the proton beam. After this reset, it takes a short amount of time for the preamplier

output to settle. This resetting occurred during the collision of the first seven

bunches.

Fig.21(a) and Fig.21(b) show the total number of elastic triggers collected during

the four days of data taking and the number of elastic triggers taken with Roman pots

inserted at different distances, as close as ∼6 mm to the beam center, respectively.

The “steps” in Fig.21(a) correspond to the time between the four RHIC stores during



54

Run9, when there was no beam circulating and data taking was stopped.
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FIG. 21. Total number of elastic triggers collected during Run9 (a) and the number

of elastic triggers taken as a function of RPs insertion distances (b).
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4.2 TRANSPORT MATRICES

Each beam particle can be described by a 6-component space vector

(x, θx, y, θy, E, 1), where (x, θx), (y, θy) are horizontal and vertical coordinates and

angles, respectively. E represents the particle’s energy and the sixth component is

a factor used to add an angular kick on the particle momentum direction. On the

other side, each optical element in the beam line, i.e. dipole or quadrupole magnet

or a drift space etc., can be described by a 6 × 6 transport matrix [75]. Furthermore,

the beam line from one to another point along the z-axis (s-axis) can be expressed

as a single transport matrix, which is the multiplication of the transport matrices of

each optical element between the two selected points along z-axis of the beam-line.

In other words, a particular beam-line segment or even the whole beam-line along

the z-axis can be expressed as a single transport matrix, as given in Eq.(76),

Mn =
n∏
i=1

Mi, (76)

where n represents the number of optical elements between two selected points along

the z-axis (s-axis).

Therefore, the propagation of a single particle through one segment or the whole

beam-line, assuming there are no intra-beam interactions, can be described as the

rotation of the phase space vector by one single transport matrix derived from n

transport matrices, Eq.(76). This phase space rotation is given by

X(s) =
n∏
i=1

Mi︸ ︷︷ ︸
Mn

·X(s = 0), (77)

where X(s = 0) is the particle’s 6-component space vector at the starting point

(usually the interaction point).

The 6 × 6 matrix of the particle transport can be decomposed into blocks where

A and B blocks (2 × 2) matrices refer to the action (focusing, defocusing, drift) on

horizontal and vertical coordinates and angles of the particles, respectively. D terms

reflect the dispersion effects of the dipole magnets on off-momentum particles, and
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K factors are the angular action of kickers:

M =



A A 0 0 D K

A A 0 0 D K

0 0 B B 0 K

0 0 B B 0 K

0 0 0 0 1 0

0 0 0 0 0 1


(78)

The full 6 × 6 transport matrices calculated for the special running conditions

and beam-line optics between the interaction point and positions of the horizontal

and vertical Roman Pot stations, for both Blue and Yellow outgoing beam-lines,

during Run9 are given by [80]:

TMB,H =



−0.091323718 25.256606 −0.0034073425 0.076451454 0 −0.0834729

−0.039643610 0.013735315 −0.00013825484 0.005662108 0 0.0046256554

−0.0032942032 −0.10011101 0.10435091 24.759801 0 0.0027857599

0.00018576904 0.0082935034 −0.043057022 −0.63319645 0 −3.3403833e−05

0.0037320072 −0.11795512 −8.9159080e−05 −0.001763131 1 0.0075384334

0 0 0 0 0 1


(79)

TMB,V =



−0.21025431 25.297812 −0.0038221063 0.093437746 0 −0.069701292

−0.039643610 0.013735315 −0.00013825484 0.005662108 0 0.0046256554

−0.0027368972 −0.075230550 −0.024819895 22.860216 0 0.0029501839

0.00018576904 0.0082935034 −0.043057022 −0.63319645 0 −3.3403833e−05

0.0037362315 −0.11795438 −0.0001005389 −0.0019312942 1 0.0078009082

0 0 0 0 0 1


(80)

TMY,H =



−0.090388919 25.302702 −0.00010063732 −0.10865959 0 0.085060902

−0.03957787 0.015879885 7.333990e−05 −0.0021584442 0 −0.004574485

0.0001727273 0.051677892 0.10617954 24.800433 0 −9.8771151e−05

−0.0001699380 −0.003448997 −0.043026306 −0.63175279 0 −1.6627775e−05

−0.0037799928 0.11709879 1.1793282e−05 −0.0002058859 1 0.007531161

0 0 0 0 0 1


(81)

TMY,V =



−0.20912230 25.350341 0.00011938194 −0.11513491 0 0.071508789

−0.039577874 0.015879885 7.333990e−05 −0.0021584442 0 −0.004574485

−0.00033708581 0.041330921 −0.02289911 22.905178 0 −0.00017832232

−0.0001699380 −0.003448997 −0.043026306 −0.63175279 0 −1.6627775e−05

−0.0037867681 0.11710162 1.308234e−05 −0.0001875129 1 0.0077933494

0 0 0 0 0 1


(82)
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4.3 CALIBRATION OF THE SILICON DETECTORS

In order to obtain precise position measurements of detected scattered protons

with respect to the center of the beam pipeline, it was necessary to perform survey

and alignment of the assembled detector packages. This task was successfully

performed both in the lab, after they had been assembled, and in the actual setup

inside the RHIC tunnel at the end of Run9. The survey and alignment of silicon strip

detectors was part of the initial calibration, which was followed by the final micro

alignment, done by the use of the elastic events in the overlapping regions of the

horizontal and vertical RPs. Furthermore, the micro alignment [81] was followed by

a study based on the collinearity of the elastic events and Monte-Carlo simulations

of the acceptance boundaries, which are limited by the apertures of the quadrupole

magnets in front of the RPs in the outgoing RHIC rings. This study of the acceptance

boundaries was used to further constrain the geometry and to finalize the alignment

of the silicon detectors.

The information obtained from survey and alignment studies of the detector

packages were used to calculate the positions of the 1st silicon strip in each one

of the silicon detector planes, with respect to the center of the RHIC beam-line.

Also, this information was used to calculate the tilt angles of the detector packages

in the x− y plane, as they were positioned inside the RPs during the run.

The survey of the detectors performed in the lab provided information on the

positions of the two survey points (tooling balls), with respect to a previously

established reference point on the package (the centering pin). The position of the

centering pin and corresponding two tooling balls, for each RP package, together with

positions of the four cross points on each corner of the silicon detector plane, made

by lithography on the silicon during manufacturing, provided the positions of the 1st

silicon strip on each detecting plane with respect to the positions of the tooling balls.

For the details of this part of the survey, refer to [77].

After the initial survey of the silicon detector packages in the lab, this process

was continued on the actual setup in the RHIC tunnel, with the goal of finding

positions of the 1st strips of each detector package with respect to the center of the

beam pipe-line. The measurements of the positions of the tooling balls, with respect

to the center of the beam pipe-line, were performed for each RP in 16 positions,

including the one where the RPs are fully retracted (∼ 70 mm from the center of

the beam pipe-line). The displacements from the fully retracted positions of the RPs
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were measured by using Linear Variable Differential Transformer (LVDT), a position

measuring device installed inside the RHIC tunnel. Precisions of these measurements

were of the order of 30 µm.

The possibility of the existence of angles of tilt for each detector package in the

x−y plane comes from the fact that each detector plane within each detector package

of the RP can be slightly tilted relative to the package itself and furthermore, each

package can be slightly tilted relative to the x−y RHIC coordinate plane. Therefore,

the final tilt angle is the sum of these two tilts.

A tilt of each detector package relative to the RHIC x − y coordinate plane is

calculated as an average tilt calculated for all surveyed LVDT Roman Pot positions.

These calculated numbers (tilt angles) are expected to be constant regardless of

LVDT positions of the Roman Pots. The table of calculated final tilt angles for all

detector planes in the RHIC x − y plane is given in Table 6. For the details of this

calculation, refer to [77].

TABLE 6. Calculated final tilt angles for all detector planes in the RHIC x−y plane.

Plane A Plane B Plane C Plane D

Tilt Angle Tilt Angle Tilt Angle Tilt Angle

(mrad) (mrad) (mrad) (mrad)

EHI 1.803 1.803 1.903 1.903

EHO -0.659 -0.659 -0.759 -0.659

EVU 0.366 0.566 0.466 0.466

EVD -2.041 -2.041 -2.041 -2.041

WHI -0.896 -0.996 -0.896 -0.796

WHO 0.607 0.507 0.507 0.607

WVD 1.320 1.420 1.420 1.220

WVU -2.472 -2.472 -2.472 -2.572

By using all the information above, both survey measurements and final tilt angles

calculations, one can calculate positions x0 and y0 of the 1st silicon strip in all the

detector planes and their relation with the LVDT positions of the RPs [77]. For
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planes A and C, in order to get these positions, one can use the given linear relation

between the calculated x0 and y0 and the LVDT position for each pp2pp run number

during Run9 (see [82]). On the other hand, for planes B and D, the calculated x0

and y0 is the same for all the runs and are, also, given in [77].

The information about the techniques related to micro-alignment (global and

local alignment) can be found in [81].
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CHAPTER 5

DATA ANALYSIS

The analysis was carried out on data taken during the 2009 RHIC run. The

“pp2pp” experiment had five days of dedicated running time with special beam

optics (see Chapter 4), during which, ∼33 million elastic triggers were recorded. The

full data sample was recorded in 45 runs which can be grouped into 12 different

“sets” or into four different “beam stores”. Each one of the “sets” corresponded to

one “set” of the Roman pots’ positions and each“beam store” corresponded to one

RHIC beam fill (store).

The main objective of this analysis is to obtain forward scattering parameters,

the nuclear slope B in particular, through elastic scattering of polarized protons at
√
s = 200 GeV and 0.003 < |t| < 0.035 (GeV/c)2.

This chapter will address several key objectives in the process of obtaining forward

scattering parameters from recorded data: reconstruction of tracks from the raw data,

selection of elastic events, assigning kinematic parameters |t| and ϕ and calculating

forward scattering parameters.

5.1 ELASTIC TRACK RECONSTRUCTION

The track reconstruction procedure can be performed in several stages. The first

stage starts at the strip/channel of the silicon micro-strip detector level. At this

level, the performance of the detector must be analyzed in detail. The next stage

in the analysis process is at the level of “clusters”. An elastically scattered proton

detected by the silicon detector, may deposit its energy in several neighboring silicon

strips of the hit strip. A cluster is a set of consecutive strips with an ADC read out

value above a certain threshold. Clusters represent real particles, and by analyzing

characteristics of clusters one can eliminate events that do not satisfy requirements

of the elastically scattered protons which are of interest in this study. The third

stage of track reconstruction procedure is at the level of Roman pot where tracks are

being tested whether they satisfy conditions of being an elastic event or not. The

final stage is the calculation of physics quantities and their analysis.



61

5.1.1 PEDESTALS AND NOISE OF SILICON DETECTOR

The pedestals and noise level study plays a very important role in this analysis.

It characterizes the detector performance and provides a threshold value that needs

to be subtracted from the measured signal in order to eliminate the part that comes

from the noise. Because this study plays such an important role, several data taking

periods of about 10,000 inelastic events, during Run 2009, were dedicated only to

this purpose.

There are ∼20,000 channels within the total of 32 detector planes (see Chapter

3), that must be studied for pedestal and noise levels. A distribution of pedestals

and pedestal-σ values for one of the 32 detector planes, is shown in Fig. 22.

The definition of the pedestal value is given with the following equation:

Pkj =
1

N

N∑
i=0

ADCikj, (83)

where Pkj is the pedestal value for the jth channel and kth SVXIIE chip (see Chapter

3), ADCijk represents ADC value for the ith event, jth channel and kth SVXIIE, and

N is the total number of events.

On the other side, noise is defined as the root mean square (RMS) value of all

ADC counts and is represented with:

σkj =
√
< ADCikj − Pkj >2

i . (84)

The total noise is defined as a sum of white noise and so called common mode

noise:

σ2
j = σ2

wj − σ2
k, (85)

where σ2
wj is the white noise.

The common mode noise is the RMS value for the distribution of average ADC

per SVXIIE chip and is represented with:

aik =
1

M

M=126∑
j=1

ADCikj, (86)

where M is the total number of channels per one SVXIIE chip and in the case of

our experimental setup equals 126. In Eq. (85), σ2
k represents the RMS value for kth
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SVXIIE chip and is given by:

σ2
k =

1

N

N∑
i=1

a2
ik −

( 1

N

N∑
i=1

aik
)2
. (87)

An example of pedestal mean values and noise for each individual strip within one

RP detector plane is presented in Fig. 22.
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FIG. 22. Representation of pedestal and pedestal-σ vs. strip (channel) number for

one silicon detector plane, i.e. B and D: x-view (6 SVXIIE chips) or A and B: y-view

(4 SVXIIE chips) detector planes. The red lines represent relative average pedestal

values of SVXIIE chips.
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5.1.2 THRESHOLD

Finding an optimal threshold value in the process of hits selection is of great

importance. It enables us to distinguish between the hits of interest and noise. Its

purpose is elimination of all the noise without affecting the real signal. The threshold

value is defined by:

Tkj = Pkj + n · σkj, (88)

where Tkj, Pkj and σkj are threshold, pedestal and noise (RMS value of ADC counts)

values for jth strip and kth SVXIIE chip, respectively. Optimization of threshold

values is performed by finding the optimal value for the “sigma cut” coefficient n in

Eq. (88). In order to find the optimum n values, in other words optimum pedestal-σ

cut, for determining the best signal to noise ratio, values of n = 3, 4, 4.5 and 5 were

studied carefully [83] and [84].

It was found that the optimum signal to noise ratio was obtained for n=5 [84].

Applying this threshold cut allowed elimination of about 96% of the total noise

from the sample. The remaining 4% of the total noise was eliminated by applying

complementary energy cuts (see Section 5.1.5).

5.1.3 CLUSTERS

As previously mentioned, elastically scattered protons detected by the silicon

micro-strip detector are represented by clusters. A cluster is defined as a set of

consecutive micro-strips with an ADC value above threshold (see Section 5.1.2).

Every cluster is characterized by three observables: size (length), energy and position.

These three observables provide all the information about the particle and its track.

The size (length) of the cluster

Due to very small scattering angles of the scattered particles of interest, it is

expected that their trajectories are almost perpendicular to the silicon planes of the

detectors. This has the consequence of very limited cluster sizes (lengths). Therefore,

it is expected that clusters that come from real events are not larger than a few strips.

The size (length) of the cluster gives the information about the number of

consecutive silicon micro-strips of the detector which had an ADC read out value

above threshold.
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The energy of the cluster

The energy of the cluster is the total energy deposited by a particle in the material

of the detector. The energy loss of the particle in the material of the detector is well

described by the Landau distribution.

The position of the cluster

The position of the cluster is defined as the weighted average:

x̄ =

N∑
i=1

xiEi

N∑
i=1

Ei

, (89)

where i is the strip index and N is the number of strips in the set that forms the

cluster, i.e., cluster size (length). xi is the position of strip i and Ei is its collected

energy minus threshold (ADC read out value).

5.1.4 CLUSTER SIZE

As previously stated, scattered protons have trajectories almost perpendicular to

the silicon strip planes of the Roman pot detector. This is due to very small scattering

angles of the scattered protons. Therefore, it is expected that clusters have lengths

of no more then a few strips. Cluster sizes were checked and it was found that in

order to select good clusters (clusters that come from good events), it is sufficient

to introduce a cut that will remove all the clusters that do not have lengths of less

than or equal to five strips from further analysis. This, however, does not imply that

clusters with lengths greater than five can not be good events. Instead, as shown in

Fig. 23, the likelihood of having clusters with lengths greater than five is very small

compared to the number of particles with lengths equal to 1 or 2. Fig. 23 represents

the number of clusters with different lengths.

Fig. 23 shows that clusters with lengths of five or more strips make < 0.5% of

the total number of clusters recorded in run 2009. This figure also shows that most

of the clusters have lengths of one or two strips.
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FIG. 23. Distribution of the size/length of clusters (in number of strips).
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(a) E with the noise peak.
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(b) E without the noise peak.

FIG. 24. A sample cluster energy distribution (Landau distribution) in a silicon

strip detector. The energy is the sum of the deposited energy above threshold (Tkj =

Pkj + 5σkj subtracted) in all adjacent strips for clusters with lengths ≤5.
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5.1.5 CLUSTER ENERGY AND FURTHER NOISE REDUCTION

When particles move through the detector, they deposit certain amount of energy

in the silicon micro-strip detectors (see Chapter 3). The total energy deposited in

the material of the detector is described by a Landau distribution. A sample energy

distribution for one of the Roman pot detectors is given in Fig. 24.
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(a) E for the clusters of size L = 1.
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(b) E for the clusters of size L = 2.
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(c) E for the clusters of size L = 3.
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(d) E for the clusters of size L = 4 and 5.

FIG. 25. Energy distribution for the clusters of size L = 1, 2, 3 and 3<L≤5.
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The plot in Fig. 24(a) shows, besides the signal of Landau shape, a peak that

is well separated from the Landau distribution and is located at low ADC count

values. This peak represents the noise or the background that remained after the

threshold cut was introduced. Due to this, a minimum energy cut, Emin, needed

to be introduced in order to remove the remaining noise/background. This cut is

complementary to the threshold cut introduced in Section 5.1.2. In fact, it represents

a “backup” if in any case, the threshold values are not set correctly.

This cut was obtained by finding minimum ADC count values between Landau

distribution and noise/background peaks. This was repeated for different cluster

sizes because the energy distribution varies with cluster size and has the tendency of

shifting towards higher energy values for higher cluster lengths.

Figure 25 shows energy distributions for the clusters of length L = 1, 2, 3 and

3<L≤5.

Clusters of size 1 and 2 show clearly separated Landau distributions and noise

peaks. These distributions were used to determine the Emin cut value. The Emin

value was set such that it removed no more than 0.2% of all the events. Analysis

shows that these values can be applied to all silicon planes in the detector package

and that they vary between Roman pot detectors. The full list of all Emin cuts for

all Roman pot detectors is shown in Table 7 [1].

TABLE 7. Energy threshold based for different Cluster Size/Length and for each

Roman pot [1].

RP/cls length EHI EHO EVU EVD WHI WHO WVD WVU

1 19 18 18 19 20 23 21 19

2 27 24 28 28 27 29 29 25

3 49 45 48 50 50 53 46 46

4 and 5 65 60 69 70 60 64 60 59

Even with these and previous cuts, there is still a background in the data sample.

This requires additional studies on the properties of the clusters.
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5.1.6 NUMBER OF HITS PER PLANE

Further background reduction can be done by limiting the number of clusters

accepted per event. In an ideal case, due to the nature of an elastic event, there

would be only one cluster (particle) in each of the detector’s silicon planes. However,

this does not always happen. It was found that about 86% of the events were ideal1.

The remaining ∼14% of events had more than one cluster per detector’s silicon

plane. This was mainly due to breakup of protons during interaction with materials

of the detectors (see Chapter 6) and background that was still present after previous

noise/background elimination efforts. Fig. 26 shows distribution of number of clusters

in one Roman pot silicon detector plane.
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FIG. 26. Distribution of the number of clusters in one silicon micro-strip plane.

The first bin shows the number of events when no particle was detected by the

shown detector plane. However, in that case, it is most likely that the particle was

successfully detected in another arm.

The distribution quickly falls and the fraction of events with more than 5 clusters

per silicon plane is as low as ∼0.5% of the number of events shown on the plot.

1“Golden events” (Events with one cluster per detector’s silicon plane that met all required
conditions)
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In order to further reduce the background, in the case of events with more than 5

clusters per detector’s Si plane, particularly problematic planes were excluded from

analysis of that specific event and the corresponding redundant silicon plane was

used instead. The installation of redundant Si detector planes was done to address

this type of events. Most probable reasons for the number of hits per plane exceeding

5 is the detection of particles of the beam halo (background) or showers of particles

caused by proton interactions with detector materials (see Section 6). Each of the

five hits that remained in the data sample was studied by applying “matching”

condition (Section 5.1.10) after which, only one hit (cluster) remained to be tested

for co-linearity.

5.1.7 SILICON STRIP/CHANNEL ANALYSIS

In this analysis, it was very important to retrieve the exact positions of scattered

protons.

N
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s

FIG. 27. Particle position distribution illustrating several malfunctioning strips in

the silicon micro-strip detector plane.

As previously explained, protons are represented by clusters that have certain

characteristics (size, energy, etc.). The size of clusters is the measure of how
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many strips/channels of the Si detector planes had an ADC read out value above

a certain threshold. By knowing the exact positions of the strips/channels inside

the detector package with their ADC read out values, one can easily determine the

cluster positions using Eq. (89), and hence the position of the scattered protons.

To successfully do that, the condition of each Si strip/channel was checked for

proper operational condition and possible malfunctions. There were a total of 20,160

channels used in this experiment and each one of them was checked for proper running

condition. Various strip/channel malfunctions are caused by extensive radiation over

time or by mechanical damage.

TABLE 8. Malfunctioning strips in the “pp2pp” Run9.

Detector (Plane) Strip Number

EHI (A) 252 - 254

EHO (A) 219

EHO (B) 100 - 103

EHO (C) 475 - 485

EVU (A) 98-100, 249, 441

WHI (A) 49 - 51

WHI (C) 442

WHO (B) 744 - 749

WHO (C) 496 - 498

WVU (A) 497, 503, 504

First, hit position distributions for every Si micro-strip detector plane were

analyzed. A sample plot of such distribution is shown in Fig. 27.

This particular analysis was focused on finding bad channels. Bad channels

are characterized by very high occupancies (“hot” channels) or no occupancies

(“dead” channels). By analyzing position distributions of accepted clusters for all

Si micro-strip detectors, 40 “hot” and “dead” channels were found. Data that came

from these channels/strips were designated as not reliable and they were excluded
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from further analysis. Even though the number of malfunctioning strips was small

compared to the overall number of strips, they still affected the efficiencies of Roman

pot detectors (see Section 5.1.12). The list of all bad channels from “pp2pp” Run9

are listed in Table 8.

5.1.8 SIGNAL TO NOISE RATIO

Proper working condition of Si strip detectors can be also checked by calculating

the ratio of the most probable energy loss value represented by Landau energy loss

distribution (see Section 5.1.5) Emp and the value of the total noise σ:

SNR =
Emp

σ
. (90)

The most probable value of energy loss Emp and the total noise σ values from

our experiment are 41 ADC and 10 ADC counts respectively. Therefore the signal

to noise ratio in our experiment was about 4:1 (see Fig. 24). Another analysis of the

signal to the total noise ratio from the “pp2pp” experiment is presented in [84].

5.1.9 TRIGGER CONDITIONS

The positions of the particles coming from real elastic events are measured by

two co-linear and opposite Roman pot detectors which are positioned symmetrically

around the STAR interaction point (IP). In order to select real elastic events, a

condition which checks that both scattered particles were detected by detectors

symmetrical around the IP was implemented. Besides four silicon detecting planes

that detected positions of the elastically scattered protons, there was a scintillator

in each of the Roman pot detector packages connected to two photo multiplier tubes

(PMT) which checked if detector was hit by particles.

Since there were a total of eight Roman pots in the experiment (16 PMTs), 16

signals were delivered to the STAR triggering system. Both amplitude and timing

information was recorded for each of the 16 PMTs.

A Roman pot “triggered” if either one of its two PMTs recorded a signal that had

proper timing and amplitude above the pedestal [83]. Elastic trigger was determined

by requiring that there is one proton detected on both sides of the IP and nothing

else. The definitions of “allowed” Elastic Arms are given in Table 9.
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TABLE 9. Definition of elastic trigger arms.

Elastic trigger arm RP combinations

EA (Elastic Trigger A - vert.) (WVU and not WVD) and (EVD and not EVU)

EB (Elastic Trigger B - vert.) (WVD and not WVU) and (EVU and not EVD)

EC (Elastic Trigger C - horiz.) (WHO and not WHI) and (EHI and not EHO)

ED (Elastic Trigger D - horiz.) (WHI and not WHO) and (EHO and not EHI)

Also, there were combinations of triggered Roman Pots that were “forbidden”.

Those triggering combinations were vetoed and corresponding events were removed

during the event reconstruction procedure, Table 10.

TABLE 10. Definition of “forbidden” triggers.

Forbidden trigger RP combination

EHF (East Horiz. Forbidden) (EHI and EHO)

EVF (East Vertic. Forbidden) (EVU and EVD)

WHF (West Horiz. Forbidden) (WHI and WHO)

WVF (West Vertic. Forbidden) (WVU and WVD)

As previously stated, whether Roman pots triggered or not was determined by

checking the amplitude (ADC signal) and timing (TAC signal) levels. The ADC

(Analog to Digital Converter) threshold level for the scintillator trigger counters was

determined and set to be equal to 5, (ADCij ≥ 5), [83]. The range for the TAC

(Time to Analog Converter) signal of the trigger counters was determined to be

100≤ TACij signal ≤1700, where index i determins the Roman pot Id and index j

corresponds to PMT number within ith Roman pot. Only after the ADC and TAC

threshold limits are met, are the conditions from Tables 9 and 10 checked. Examples

of TAC and ADC plots for one of the triggered Roman pot arms are shown in

Figs. 28(a) and 28(b).
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(b) WHO Roman pot.
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(c) EHI-WHO Roman pot arm.
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(d) IP s-axis position from TACs.

FIG. 28. TAC vs. ADC signals for the EHI (a) and WHO (b) Roman pots. Elastic

events can be seen as a bright spot in the TAC for EHI vs WHO (c). The time

difference is shown in (d).

Figs. 28(a) and 28(a) show TAC vs. ADC signals for the EHI and WHO Roman

pots respectively . Since “pp2pp” TACs were set with a “common stop” [12], higher

TAC signals corresponded to the faster particles. Having this in mind, one can notice



74

from Figs. 28(a), 28(b) and 28(c) that particles detected by the EHI Roman pot were

slightly faster than their corresponding co-linear particles detected by WHO Roman

pot. This indicates that the interaction point (IP) was not positioned at the s = 0

position which becomes obvious from Fig. 28(d). The mean value of Gaussian fit on

this Figure is equal to 50 TAC units which corresponds to roughly 0.14 m (1 TAC

unit = 18 ps).

The triggering setup of the “pp2pp at STAR” experiment plays a very important

role in the elastic data analysis, mainly because it largely contributes to the

systematic uncertainties on the event loss and selection process. Therefore, a careful

study is needed in order to understand timing (TAC), collected charge (ADC) signals

and trigger setup in general [12]. This detailed study is presented in Sections 6 and

8.

5.1.10 CLUSTER MATCHING

In order to increase the efficiency for detecting protons (see Section 5.1.12)

and further reduce background, detectors were built from four detecting silicon

planes. Two of them measure particle x-coordinates and the other two particle

y-coordinates in the local coordinate systems relative to each of the detecting planes

(see Chapter 3). In an ideal case, every particle will deposit some energy in each

of the detectors’ silicon planes (see Section 5.1.5) and will, therefore, have both

sets of local coordinates determine its local positions. In an ideal case these two

pairs of coordinates will give exactly the same local proton position. Consequently,

the matching check of these coordinate pairs is very important when dealing with

real data samples that are, naturally, not ideal. Applying this condition helps in

distinguishing between clusters that come from real events and clusters that come

from background. However, background particles can still make tracks which satisfy

this condition. It is estimated that the number of background particles which satisfy

the matching check is small. Thus, further checks are needed.

The matching algorithm is as follows. Positions of clusters from redundant planes

(A(B) and C(D)) were checked whether they satisfy:∣∣(x1; y1)A(B) − (x2; y2)C(D)

∣∣
RP
≤ 2 · strip pitch, (91)

where strip pitch is the distance between centers of two consecutive strips (in X-type

detector equals 105 µm and in Y-type detector 97.4 µm).
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However, before this condition was checked, redundant planes were examined

for their number of clusters in an attempt to extract every good elastic event from

the data sample. There are four pairs of redundant micro-strip detector pairs from

which cluster coordinates were matched and then extracted. In order to call the

event an elastic event, a single coordinate is needed to be obtained from each of

the four micro-strip detector pairs (both x and y coordinates on both sides of the

IP). Positions of clusters were matched based on the algorithm presented in Table

11. This algorithm is independently applied to all Roman pots from any triggered

detector arm on both sides of the IP.

TABLE 11. Cluster matching algorithm.

Case Ncls(A;B) Ncls(C;D) position

0 0 0 NA

1
0 1 (x; y)(C;D)

1 0 (x; y)(A;B)

2
0 >1

NA
>1 0

3 1 1 (x; y)ave =
(x;y)(A;B)+(x;y)(C;D)

2

4
1 >1

(x; y)ave using min |∆(x; y)|
>1 1

5 >1 >1 (x; y)ave using min |∆(x; y)|

The differences between two sets of coordinates of the same kind were observed

and cluster positions difference plots were produced. Plots for these differences for

East Horizontal Inner (EHI) Roman pot are shown in Fig. 29.

The plots in Fig. 29 show that differences in particle positions between

corresponding planes are in most cases within 200 µm, which is equal to the width

of two Si strips. The number of events with position differences between coordinates

of corresponding planes that were above 200 µm represents 0.1% of the total data

sample and were excluded from further event reconstruction procedure because they
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do not originate from the same event. The plots in Fig. 29 clearly show one or two

distinguished peaks. The difference between those peaks is equal to the distance

between two strips within the same Si detector plane. Having one or two of these

peaks on these plots also serves as a check of how well two Si micro-strip detector

planes within the same detector package overlay each other. In other words, the

difference between nth strip of one Si detector plane and nth strip of the other,

corresponding, Si micro-strip detector plane serves as a good check of how well the

detector package was assembled. However, one needs to note here that it is quite

difficult to achieve 10µm level precision in alignment of two independent detector

planes during the detector assembly process. In fact, this was never intended

in the first place due to the fact that it is easy to correct this lack of precision

by determining and applying corresponding offsets after the end of experimental

measurements and during the event reconstruction procedure.
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(b) ∆y(EHI).

FIG. 29. Position difference in [m] between two corresponding, redundant x and y

planes within one Roman pot before application of the “cluster matching” condition.

Also, one can notice a clear off-zero shift for these distributions. These shifts occur

as an artifact of several procedures for detectors’ alignment and clusters’ positions
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calculations in the “global” (RHIC) coordinate system with respect to the center

of the beam pipeline. To successfully perform the cluster matching procedure, they

need to be taken into account. The table of the shifts used in the cluster matching

procedure is given in Table 12.

TABLE 12. Silicon detector planes offsets.

RP/offset EHI EHO EVU EVD WHI WHO WVD WVU

δx [µm] 17 -1 -34 0 -4 -19 -61 -41

δy [µm] 41 -46 -28 7 -63 30 7 -2

After confirming the condition from Eq. (29), positions of the particles were found

as an average value according to Table 11 from all four silicon micro-strip detector

pairs.

5.1.11 CO-LINEARITY OF ELASTICALLY SCATTERED PROTONS

Due to the nature of elastic events, elastically scattered particles should have

the same scattering angles. Hence, positions of particles that come from the same

elastic event are measured by two opposite, co-linear detectors, symmetrical with

respect to interaction point (IP). The difference between scattering angles at IP of

co-linear particles should be close to zero. Scattering angles were calculated from the

transport equations (see Section 3.7) and their differences were analyzed. A sample

distribution of scattering angle at IP differences fitted with Gaussian fit is shown in

Fig. 30.

The plots in Fig. 30 show that differences in scattering angles of elastically

scattered protons are in most cases within 3.5σ of Gaussian distribution fit. The

number of events with co-linear scattering angle differences bigger than 3.5σ of the

fitted Gaussian mean represent about 15% of the total data sample and were excluded

from further analysis. The mean values of these differences show offsets from zero. It

is crucial to correct for these offsets before applying any co-linearity cuts. The plots

in Fig. 30 show differences in scattering angles before these offsets were corrected.
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(a) ∆θx = θx(EHO)− θx(WHI).
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(b) ∆θx = θx(EHO)− θx(WHI): log scale.

FIG. 30. Distribution of scattering angle differences of two co-linear detector packages

[rad] before co-linearity correction cut.

Besides the 3.5σ co-linearity cut, another quantity, χ2, was calculated from values

of protons’ scattering angles as co-linearity analysis cross check with the purpose

to further reduce the remaining background. It is estimated that about 1% of

background events remained in the data sample after the 3.5σ co-linearity cut was

applied. The χ2 variable is given by:

χ2 =

(
∆θx
σx

)2

+

(
∆θy
σy

)2

, (92)

where ∆θx and ∆θy represent the differences in scattering angles between co-linear

protons and σx and σy are one standard deviation from the Gaussian fits to these

differences, in x and y-coordinates respectively. A sample χ2 distribution is shown

in Fig. 31.

In order to cross-check the 3.5σ co-linearity cut, a χ2 ≤ 22 cut was applied.

Particles that passed the 3.5σ cut have χ2 ≤ 22. Co-linearity plots of θx,y(East) vs.

θx,y(West) and ∆(θx) vs. ∆(θy) before and after 3.5σ and χ2 ≤ 22 co-linearity cuts

are shown in Fig. 33 and Fig. 32 respectively.
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FIG. 31. χ2 for EHO-WHI detector arm before the 3.5σ co-linearity condition is

applied. Note the logarithmic scale on the right.
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(a) ∆(θx) vs. ∆(θy) before cuts.

∆θy[rad]
­0.5 ­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.5

­3
10×

∆
θ
x
[r
a
d
]

­0.5

­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

0.5

­3
10×

(b) ∆(θx) vs. ∆(θy) after cuts.

FIG. 32. ∆(θx) vs. ∆(θy) before and after 3.5σ and χ2 ≤ 22 co-linearity cuts for

EHI-WHO detecting arm.
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FIG. 33. Co-linearity of particles from opposite sides of IP before and after 3.5σ and

χ2 ≤ 22 co-linearity cuts for EHI-WHO detecting arm.

5.1.12 EFFICIENCIES OF SILICON STRIP DETECTORS

The efficiency of all Si strip detecting planes in the experiment was studied. The
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efficiency of a detector plane is defined as:

εi =
Ni,detected

Ni,total

(93)

where Ni,detected and Ni,total represent number of detected and total number of

particles, respectively, that passed through ith detector plane. Total number of

particles is given with:

Ni,total = Ni,detected +Ni,not detected. (94)

In order to find the number of particles that passed through ith detector but were

not detected, one has to check whether those particles were, in fact, detected by

other detector planes (planes within the same Roman pot, as well as the ones within

opposite, co-linear Roman pot). If all other Si planes detected the particle, and the

one that is being checked didn’t, then the hit that was not detected can be added

to Ni,not detected. From efficiencies of all detector planes represented in Fig. 34(a)

only EVU(A) and WHI(A) have values less than 97%. This is mainly due to the

existence of bad channels/strips in this detector planes. If a particle hits the bad

strip (malfunctioning strip with high or no occupancies) and those strips are excluded

from track reconstruction analysis, it is still added to the Ni,not detected because bad

channels add to the inefficiency of the detector.

The efficiency analysis was also performed when clusters from bad channels are

not added to Ni,not detected. By comparing Fig. 34(a) and Fig. 34(b) one can conclude

that inefficiencies due to the existence of bad channels (see Section 5.1.7 and Table

8) contribute the most.

Efficiencies of the detecting planes range from about 96.5% to over 99%.

Therefore, the overall average probability to detect a particle in one detector Si

plane pair is about 99.9%. The requirement that a particle is detected on both

sides of the IP in both pairs of Si detector planes (A and C or B and D; the same

nomenclature as in the Table 11) gives the overall probability to detect elastic event

in the detecting system (all Roman pots) of about 99.6%.
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FIG. 34. Efficiencies for all detector planes.

5.1.13 FIDUCIAL CUTS

Generally, a fraction of particles acquires enough transverse energy from the

repulsive space-charge forces within the beam to form a halo. Characteristics of

the beam halo are absence of clearly defined separation between the halo and the

main core of the beam and increased population of the outer part of the beam.

These properties and proximity of the detectors to the beam during data taking

periods lead to the “pollution” of the elastic data sample with particles of the beam

halo. Therefore, the elastic event sample is further reduced by applying fiducial cuts.

Since there was no possibility to distinguish between particles from the beam halo

and elastically scattered protons, highly occupied regions in certain detector stations

were entirely removed from further analysis. It is estimated that only about 0.3% of

the particles were removed from the elastic data sample with this cut.

An example of proton |t| vs. ϕ distributions before and after fiducial cuts is

represented in Fig. 35.
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FIG. 35. |t| vs. ϕ distributions of elastically scattered protons.

5.1.14 ELASTIC TRACK RECONSTRUCTION SUMMARY

Table 13 gives the total number of events processed in 45 runs and the number

of events after each major selection criteria: elastic trigger (scintillators with proper

combinations); cluster matching and co-linearity condition.

TABLE 13. Elastic event selection summary.

Tot. No. of events recorded 58,068,295

Tot. No. of elastic triggers 32,729,261 (∼44% less)

Tot. No. of “matching” events 25,195,897 (∼23% less)

Tot. No. of co-linear elastic events 22,130,570 (∼12% less)

Tot. No. of “golden” events 18,452,103 (∼17% less)
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5.2 ASSIGNING KINEMATIC PARAMETERS

5.2.1 BEAM TRANSPORT EQUATIONS

Correlated equations for positions and angles of the beam protons describe the

beam transport. Elastically scattered protons have small scattering angles and their

trajectories are determined by the beam optics. Consequently, elastically scattered

protons can be described by the same set of correlated equations [11]:

xd = a11 · xIP
0 + Leffx · θIP

x + a13 · yIP
0 + a14 · θIP

y

θdx = a21 · xIP
0 + a22 · θIP

x + a23 · yIP
0 + a24 · θIP

y

yd = a31 · xIP
0 + a32 · θIP

x + a33 · yIP
0 + Leffy · θIP

y

θdy = a41 · xIP
0 + a42 · θIP

x + a43 · yIP
0 + a44 · θIP

y ,

(95)

where xIP
0 and yIP

0 are positions at the interaction point, and xd, yd, θdx and θdy are

positions and angles at the detection point respectively. Coefficients aij, Leffx and

Leffy depend on the magnetic fields in each of the four detecting sectors and are

given with transport matrices (see Section 4.2).

Solving the system of equations, Eq. (95), for the scattering angles at the

interaction point results in:

θIPx =
1

Leffx − a14a32

Leffy

[
xd +

a14
Leffy

yd +

(
a14a31
Leffy

− a11
)
xIP0 +

(
a14a33
Leffy

− a13
)
yIP0

]
θIPy =

1

Leffy − a14a32

Leffx

[
yd +

a32
Leffx

xd +

(
a32a13
Leffx

− a33
)
yIP0 +

(
a32a21
Leffx

− a31
)
xIP0

]
.

(96)

Using transport matrices leads to eight equations for proton scattering angles at

the IP, two for each detecting sector:

θIPx(B,H) = 0.03959 ·
[
xd − 0.0001223 · yd + 0.003615 · xIP0 + 0.0001477 · yIP0

]
[1/m]

θIPy(B,H) = 0.04039 ·
[
yd + 0.0001601 · xd − 0.004214 · yIP0 + 0.0001477 · xIP0

]
[1/m]

θIPx(B,V ) = 0.03953 ·
[
xd − 0.0001616 · yd + 0.008311 · xIP0 + 0.0001471 · yIP0

]
[1/m]

θIPy(B,V ) = 0.04374 ·
[
yd + 0.0001301 · xd + 0.001086 · yIP0 + 0.0001471 · xIP0

]
[1/m]

θIPx(Y,H) = −0.03952 ·
[
xd − 0.0001732 · yd − 0.003572 · xIP0 + 0.0001477 · yIP0

]
[1/m]

θIPy(Y,H) = −0.04032 ·
[
yd − 0.0000824 · xd + 0.004281 · yIP0 − 0.0000144 · xIP0

]
[1/m]

θIPx(Y,V ) = −0.03945 ·
[
xd + 0.0001983 · yd − 0.008249 · xIP0 − 0.0000002 · yIP0

]
[1/m]

θIPy(Y,V ) = −0.04366 ·
[
yd − 0.0000712 · xd − 0.000999 · yIP0 − 0.0000002 · xIP0

]
[1/m]

(97)

Positions xIP
0 and yIP

0 were set to zero (which greatly simplifies Eq. (97)) and were
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chosen as reference points for various corrections (i.e. alignment, etc.). Sample plots

of proton scattering angles are shown in Fig. 36.
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FIG. 36. θIP
y vs. θIP

x sample plot for one RP insertion position. Less populated

regions on the plots do not come from bad/noisy strips (see Section 6).

Scattering angle values obtained by using Eq. (97) were used to calculate the

value of the four momentum transfer squared (see Section 3.7):

| − t| = −p2sin2

(
ΘIP

2

)
' −p2Θ2

IP, (98)

where ΘIP is given by:

ΘIP =
√

(θIP
x )2 + (θIP

y )2. (99)

The azimuthal angle ϕ was calculated by using the scattering angles values obtained

from the same set of equations, Eq. (97):

ϕ = arctan

(
θIP
y

θIP
x

)
. (100)

Since both co-linear protons come from the same, single event, the values of |t|
and ϕ were averaged between the values obtained from both sides of IP. The sample
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distribution of kinematic parameters assigned to each proton in the sample is shown

in Fig. 37.
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FIG. 37. |t| vs. ϕ sample plot for one RP insertion positions.
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CHAPTER 6

SIMULATIONS AND DATA CORRECTIONS

After reconstruction of elastic events from the raw data, it was noticed that some

detecting regions had significantly less efficiency for particle detection. Bearing in

mind that the efficiencies of the silicon strip detectors were thoroughly checked, (see

Section 5.1.12) and were found to be very satisfactory (more than 99%), the existence

of less efficient regions of the detectors’ planes was somewhat puzzling.

Less efficient regions of the detectors’ silicon micro-strip planes manifest

themselves as “shadows” on spatial, angular particle distributions or on the |t| vs.

ϕ plots (see Fig. 36 and Fig. 37). A careful study of these so called “shadows”

was necessary because they are located across 100% acceptance detectors’ regions

and protons that this analysis is based upon come from these regions. Consequently,

not studying and/or correcting this effect can possibly lead to incorrect differential

cross-section values and hence, nuclear slope parameter B and σtot.

There are two causes for the existence of this systematic effect. The first one

is the interaction of scattered protons with materials from which Roman pots and

detector packages were manufactured. Steel edges at the bottom of the RP cylindrical

vessels and their thin front and back steel windows play a major role in the “shadow”

appearance. When scattered ∼100 GeV/c protons reach the Roman pot detectors,

they interact with their materials and loose some energy (about 130 keV in 5 cm of

steel, [74]), which is a rather small loss when compared to their energy before this

interaction. However, there is a good probability that these protons will scatter or

even disintegrate, deviating from their original trajectories. This can lead to incorrect

detection of proton positions and angles. These offsets from original trajectories

were carefully studied because they can cause rejection of events for not satisfying

co-linearity selection criteria (see Section 5.1.11).

The second effect that can cause “shadows” to occur are elastic trigger conditions

that were set in this experiment (see Section 5.1.9). When protons break apart after

interaction with materials of the Roman pots, the products of this interaction can

end up triggering scintillators of the Roman pot in the same detector station, causing

“forbidden” elastic trigger combination (see Table 10) and hence rejection (“vetoing”)
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of perfectly good elastic events.

The experimental layout of this experiment (see Fig. 14) is such that horizontal

RP stations are placed closer to the IP then vertical RP stations and hence, are

“front” RP stations. Therefore it is expected that vertical RPs (“back” RPs) have

both of the effects listed above and that horizontal RPs (“front” RPs) only have

trigger “vetoing” effects. However, the trigger effects are more complex in the

sense that there is significant probability that RPs from opposite sides of the IP

can “shadow” each other, especially if they are inserted to different distances from

the beam. This will be explained in one of the following sections.

In attempt to understand, estimate and correct these systematic issues that

occurred in the experiment and possibly improve and optimize future runs, Monte

Carlo simulations, using GEANT4 simulation software, were performed [85].

6.1 GEANT4 SIMULATION OF INTERACTIONS OF PROTONS

WITH THE MATERIALS OF ROMAN POTS

GEANT4 is a toolkit for the accurate simulation and passage of particles through

matter. Its areas of application include high energy, nuclear and accelerator physics,

as well as studies in medical and space science [85]. A simulation using GEANT4

includes all aspects of simulation processing starting with the geometry of the system

and materials involved, through introduction of particles of interest, generation of

primary events and their tracking, up to introducing physics processes that govern

particle interactions etc.

The simulation in this analysis follows these steps:

1. Generating a system of eight Roman pot detector packages using proper

geometry, dimensions and materials, positioned to resemble the entire detecting

system used in the experiment and inserted to the same 11 insertion positions

as in Run 2009.

2. Random generation of N protons with properties of real beam protons

(momentum, etc.) and their tracking throughout detecting system (including

appropriate High Energy Physics simulation models, e.g. FTFP-BERT, [85])

with emphasis on their interactions with virtual Roman pots.

3. Recreating trigger vetoing conditions, analyzing systematics and obtaining

correction functions.



89

6.1.1 GEOMETRY OF THE SYSTEM AND MATERIALS INVOLVED

Since the goal of this simulation was to study particle interactions with materials

of Roman pots as well as the systematic effects caused by these interactions, it was

sufficient to simulate only Roman pot detecting system and not to include any of

the beam optics elements before or after it. In order to achieve this, particles were

randomly generated at the interaction point (IP) and then “propagated” to their

detecting positions by using the transport equations from experimental Run9 (see

Section 5.2.1).

Each Roman pot detector is simulated in that way that it resembles the real

detector used in the experiment. It consisted of detector housing and detecting

package. Each detector package is assembled out of four silicon detecting planes

with their power circuit boards and aluminum rails and one scintillator (see Section

3.4).

(a) Simulated RP detector package. (b) Simulated RP detector housing.

FIG. 38. GEANT4 simulation of RP detector package and housing. Detector package

is an assembly of Si micro-strip detectors (yellow), PCBs (green), Al rails (grey) and

vinyltoulene scintillator (magenta). Roman pot housing consists of stainless-steel

housing frame and thin stainless-steel window.

In this simulation it was sufficient to approximate silicon strip detecting planes
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as blocks of silicon material of proper thickness and not as an assembly of given

number of p-n junctions (micro-strips) used in the experiment. The detector housing

is simulated to be made of stainless steel with its interior filled with air at pressure of

one atmosphere. PCBs are made of G10FR4 material which is a mixture of 60% SiO2

and 40% Epoxy-Resin (C11H12O3). Material for scintillators is vinyltoulene used by

many scintillator manufacturers. The full list of used materials in this GEANT4

simulation is given in Table 14.

TABLE 14. The list of materials used in GEANT4 simulation for detector

construction.

RP Component Material

Si micro-strip Si

Scintillator G4 PLASTIC SC VINYLTOLUENE

Al rails Al

PCBs G10FR4

RP housing Stainless-steel

G10FR4 60% SiO2 and 40% Epoxy-Resin

Epoxy-Resin C11H12O3, density = 1.268 g/cm3

Sensitive parts of simulated Roman pots were logical volumes of four silicon planes

and a scintillator logical volume [85]. These sensitive volumes were designed to

detect hits and record positions and deposited energies (in the volume material) of

all particles that interacted with them. Examples of deposited energies, by both

primary protons and all other secondarily produced particles in the Si micro-strip

planes and scintillators, are presented in Fig. 39.
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(b) Deposited energy in 400 µm thick Si.

FIG. 39. Deposited energies (in MeV) by primary protons and secondarily produced

particles in the sensitive logical volumes of simulated Si micro-strip planes and

scintillators.

Deposited energies depend on the type and energy of the particle and on the

properties of the material it passes. In the case of plastic scintillators, deposited

energy (due to the ionization by all particles) is proportional to the number of

“optical” photons produced in the scintillator. This number is proportional to

the number of “optical” photons that fell on the photo-cathode of the PMTs

which is further proportional to the number of photo-electrons emitted from this

photo-cathode. The ADC count variable (digitized integrated PMT current) that is

assigned to this number is what we measure in reality. In this GEANT4 simulation,

the full chain of ADC count on energy deposit dependence was not simulated.

Instead, for the purpose of triggering, the energy deposit was tuned in the scintillator

by smearing and linear conversion to the measured ADC spectra.

Positions of primary particles, for the cases when energy was deposited in

simulated scintillators, were recorded by four simulated silicon micro-strip planes.

Single hit positions were obtained by calculating an average value from the positions

recorded in silicone planes. It is important to note that deposited energies were

recorded for any particle that interacted with sensitive logical volumes and positions

only for primary generated protons. By having this, “pollution” in recorded data



92

samples by secondarily produced particles was avoided. On the other hand, it was

absolutely necessary to record energies deposited by all particles produced in the

simulation for the recreation of proper trigger conditions from 2009.

6.1.2 GENERATION OF PRIMARY EVENTS, PARTICLES OF

INTEREST AND THEIR TRACKING

Each of the simulated events started with random generation of two numbers,

four momentum transfer squared |t|, and azimuthal angle ϕ at the interaction point

(IP). Azimuthal ϕ angle was generated as a uniform random distribution of numbers

between 0 and 2π and four momentum transfer squared |t| from both uniform

and the distributions determined by the equation for theoretical differential elastic

cross-section (see Eq. (34)) with ρ = 0.13, σtot = 51.6 mb and B = 16.3 c2/GeV2,

parameters fixed to the expected values obtained from the extrapolation of the

World available experimental data [10], [9], [13]. Simulated |t| range covered the

experimental pp2pp Run9 range which was between 0.001 (GeV/c)2 and 0.035

(GeV/c)2.

The two generated numbers were then used to calculate scattering angles θIP
x and

θIP
y at the IP by using Eq. (101)

θW,E0 x = arctan (tanθ cosϕ)

θW,E0 y = arctan (tanθ sinϕ) ,
(101)

where θ =
√
t/p and p = 100 GeV/c.

Smearing of scattering angles was done by adding a non-zero crossing angle and

beam angular divergence. The beam angular divergence was simulated as a Gaussian

correction with standard deviation of about 40 µrad, obtained from the experimental

angular beam divergence of Run9 data, Eq.(102),

θW,Ex,y = θW,E0 x,y + δθW,Ex,y , (102)

where δθW,Ex,y represents smearing of the scattering angles and is equal the sum of the

beam crossing angle and angular beam divergence.

Furthermore, another smearing was introduced, this time to the z positions of the

interaction point, also in the form of a Gaussian distribution around z = 0. Standard

deviation for the Gaussian of the z vertex position was also obtained from the data.

After the smearing process, calculated scattering angle values were used in
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transport equations (Eq. (95)) in order to obtain θdx, θ
d
y , x

d and yd values in front

of both, blue and yellow, horizontal Roman pot stations (Eq. (103)). The beam

positions xIP
0 and yIP

0 were assumed to be equal to zero.
x

θx

y

θy


W,E

RP

= TW,EH


0

θx

0

θy


W,E

IP

. (103)

Momentum directions of primarily generated protons were set by the use of

calculated scattering angles at the detection point θW,ERP as:

px = 0

py = sin θW,ERP

pz = ±cos θW,ERP .

(104)

Tracking of primarily generated 100 GeV/c protons started in front of the blue

and yellow horizontal RP stations and ended after both blue and yellow vertical RP

stations. Propagation of “primaries”, their interaction with materials and creation

and propagation of secondary generated particles is controlled by the predefined

GEANT4 high energy physics model FTFP BERT.

Generated particles were accepted only if both particles on either side of the

IP did not hit the apertures of Q2 and Q3 quadruple magnets. This was done by

calculation of xW,EQ2,Q3 and yW,EQ2,Q3 coordinates at Q2 and Q3 and their comparison with

the size of the apertures of corresponding magnets (see Section 6.4).

6.2 CALCULATION OF KINEMATIC VARIABLES AT IP FROM

DETECTED SIMULATED EVENTS

After detection of positions and deposited energies of simulated particles at the

Roman pots, kinematic variables |t| and ϕ at the interaction point were calculated.

The methodology and reconstruction procedure was essentially the same as the

procedure and methodology applied during reconstruction of the same variables

from the IP in experimental data samples (see Chapter 5.2). Plots with calculated

kinematic variables together with positions of detected simulated particles are

represented in Fig. 40.
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FIG. 40. |t| vs. ϕ and spatial distributions of simulated particles.

6.3 TRIGGER BIAS

One of the purposes of this simulation was the study and correction of trigger

bias systematic effects observed in selected experimental data samples.

FIG. 41. Simulation of secondary particles production in the primary proton - RP

detector material interactions. Image curtesy of R. Sikora [8].
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The primary particle loss is more conspicuous in vertical Roman pot stations. As

previously noted in Chapter 3, vertical Roman pot stations are positioned farther

away from the interaction region and horizontal closer to it. Horizontal and vertical

Roman pot stations have overlap regions in the x − y-coordinate plane. When

outgoing scattered protons hit horizontal Roman pots, especially in the case when

they hit Roman pot steel edges, they can disintegrate or deviate from their original

trajectories. If this occurs, those protons become lost for corresponding vertical

Roman pot detectors and this loss is observed in the data samples of vertical Roman

pots. Furthermore, this process works reversibly, when hitting the edges of vertical

Roman pot stations vetoes corresponding events in horizontal Roman pots. This

process is less intuitive. As explained above, if the scattered outgoing proton

disintegrates while hitting the steel edge of one of the vertical Roman pots, the

showers of particles that are produced in the process can cause a “forbidden” trigger

combination (Table 9) that vetoes events in the corresponding horizontal Roman pot

stations. Both of these effects can be observed in Fig.37.

x[m]

­0.05 ­0.04 ­0.03 ­0.02 ­0.01 0 0.01 0.02 0.03 0.04 0.05

y
[m

]

­0.05

­0.04

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

(a) Coordinate space.

φ[rad]
­3 ­2 ­1 0 1 2 3

]
2

t[
(
G

e
V

/c
)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) |t| - ϕ space.

FIG. 42. Horizontal Roman pot detectors: Distributions of particles lost due to

trigger bias systematic effect.

It is estimated from the experimental data, that the loss of events due to trigger

inefficiencies in certain spatial regions of the detector are of the order of about 25%
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of the entire event sample collected in those regions. This is mainly in the regions

of the horizontal RPs that line up with steel edges of vertical RPs. This effect is

also present in the remaining regions of the detector due to uniformly distributed

material. However, from the simulation it was found that vetoing in those regions

was of the order of several percent.

The particles lost from experimental data can not be retrieved. However, their

number and spacial distribution is estimated in this GEANT4 simulation. The

distributions of particles in coordinate and t − ϕ space are represented in Fig.42.

6.3.1 CORRECTION FUNCTIONS

A study of inefficiencies due to the trigger bias effect by use of simulated events

made the correction of this systematic effect possible. In order to successfully correct

selected experimental data, correction functions for |t| distributions were calculated.

For this purpose, simulated |t| distributions with and without trigger bias conditions

were used. Correction functions are obtained by:

C (−t) =
dN
dt

∣∣
w. veto

dN
dt

∣∣
w/o. veto

(105)

An example of a trigger bias efficiency (correction) function for a one of the

horizontal detector pairs is shown on Fig.43.

Correction functions depend on several factors, mainly the precision of the

simulation. The errors of the correction functions, or in another words, the errors they

introduce to the results that are being corrected, are mainly related to the statistics

in the simulation. Therefore, the number of events in this simulation was optimized

in order to introduce negligible statistical errors to the experimental data samples

that are being corrected. However, even though obtained correction functions had

negligible statistical errors, the systematic error of this method still contributes to

the error of the final B result.

Each simulation had 10 million randomly generated events that were used to

calculate correction functions. Each of the analyzed data sets (with different Roman

pot insertion positions) had its unique correction function.
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FIG. 43. Trigger Bias efficiency as a function of |t| for EHI-WHO horizontal RP arm,

data set 0, obtained from the GEANT4 Monte Carlo simulation.

6.4 DETECTOR ACCEPTANCE STUDY

One important result is obtained by simulating the acceptances and kinematic

ranges of the Roman pot detector system used in this experiment. As previously

explained (see Section 6.1.2), the trajectories of particles are limited by magnets’

apertures and detector acceptances. Acceptances for all RP positions in Run9

were calculated and |t|-values of the first strip of each RP was determined. This

study shows, given the size of the apertures of accelerator magnets and RP insertion

position, what range of |t| was achieved in Run9 and more importantly, what was

the |t|-region of 100% acceptance that should be used for extracting of the nuclear

slope parameter B in a combined fit to the differential cross section. Example of

acceptance plot is presented on Fig.44.

The simulation process in the analysis of the Roman pot acceptances in the Run

2009 follows the same procedure given in Section (6.1.2).
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FIG. 44. Acceptance as a function of |t|. A region in |t|, where the acceptance is

independent of |t|, is the region of 100 % and flat/constant acceptance: 0.006 ≤ |t| ≤
0.02 (GeV/c)2. Low-|t| edge is determined by RP insertion depth and high-|t| edge

by apertures of accelerator magnets.

Acceptance plots were obtained by dividing the number of simulated protons for

a given |t| value, that successfully reached the RP, passing through all the limiting

apertures of the magnets between RPs and IP, with the numbers of protons simulated

at the IP for exactly the same |t| value. The fall-offs in acceptance plots on the left

and right are determined by insertion length of each RP and the size of the magnets’

apertures respectfully. In addition, these fall-offs depend of the crossing angles (in

this simulation called the smearing of the scattering angles at the IP), beam and

vertex positions etc.

A comparison of the |t|-distributions of the experimental data sets from Run

2009 together with the acceptance functions for the cases of both detecting arms of

horizontal Roman pot detectors is given in Figs. 45 to 49. From these acceptance

plots, a Table 15 of |t|-ranges used in fitting of experimental |t|-distributions (see

Chapter 7) is extracted.
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(a) EHI-WHO detector arm.
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FIG. 45. RP acceptance functions (red) and experimental |t|-distributions (blue) in

the case of RP insertion position set 0 for azimuthal −0.5 ≤ ϕ ≤ 0.5 rad (EHI-WHO)

and−2.7 ≥ ϕ ≥ 2.7 rad (EHO-WHI) ranges respectively (see Fig. 40 and Sect. 7.1.1).
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FIG. 46. RP acceptance functions (red) and experimental |t|-distributions (blue) in

the case of RP insertion position set 1 for azimuthal −0.5 ≤ ϕ ≤ 0.5 rad (EHI-WHO)

and−2.7 ≥ ϕ ≥ 2.7 rad (EHO-WHI) ranges respectively (see Fig. 40 and Sect. 7.1.1).
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(a) EHI-WHO detector arm.
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FIG. 47. RP acceptance functions (red) and experimental |t|-distributions (blue) in

the case of RP insertion position set 4 for azimuthal −0.5 ≤ ϕ ≤ 0.5 rad (EHI-WHO)

and−2.7 ≥ ϕ ≥ 2.7 rad (EHO-WHI) ranges respectively (see Fig. 40 and Sect. 7.1.1).
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(a) EHI-WHO detector arm.
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FIG. 48. RP acceptance functions (red) and experimental |t|-distributions (blue) in

the case of RP insertion position set 6 for azimuthal −0.5 ≤ ϕ ≤ 0.5 rad (EHI-WHO)

and−2.7 ≥ ϕ ≥ 2.7 rad (EHO-WHI) ranges respectively (see Fig. 40 and Sect. 7.1.1).
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FIG. 49. RP acceptance functions (red) and experimental |t|-distributions (blue) in

the case of RPinsertion position set 9 for azimuthal −0.5 ≤ ϕ ≤ 0.5 rad (EHI-WHO)

and −2.7 ≥ ϕ ≥ 2.7 rad (EHO-WHI) ranges respectively (see Fig. 40 and Sect.

7.1.1).

Five out of the total of eleven data sets were analyzed for extraction of the nuclear

slope parameter B. A discussion about reasons behind rejection of certain data sets

will be presented in Chapters 7 and 8.

TABLE 15. Ranges of |t| used in the least square fits to the data for the extraction

of nuclear parameter slope B in GeV2/c2.

Set No. EHI-WHO EHO-WHI

0 0.006-0.02 0.007-0.02

1 0.006-0.02 0.007-0.02

4 0.006-0.02 0.008-0.02

6 0.006-0.02 0.008-0.02

9 0.006-0.02 0.008-0.02
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CHAPTER 7

PHYSICS RESULTS

In this chapter we present our result for the nuclear slope parameter B from

RHIC Run9. The result presented here was obtained from five experimental data

sets, each representing one combination of the measurement positions of the Roman

pot detector packages. There were total of thirteen experimental data sets with

approximately 22 million elastic events selected from the sample of about 33 million

elastic triggers recorded in Run9. Elastic events extraction procedure for selection of

proton-proton elastic events is shown in Chapter 5.

7.1 ANALYSIS OF EXPERIMENTAL DATA SETS

As previously stated there were a total of thirteen experimental data sets analyzed

in this study. Those sets consist of 45 experimental data taking runs and belong to

four RHIC beam fills/stores of the Run9 (see Table 4) [77]. After careful analysis of

the goodness of all the sets, eight were rejected due to small number of elastic events

or problems with the beam fills/stores and/or malfunctioning Roman pot detectors

and five were used for extractions of nuclear slopes of the forward peak B.

After initial selection of good data sets (measurement positions of the detector

packages), elastic events were plotted in a |t| vs. ϕ space for the two horizontal arms

independently. Vertical detector arms were not used for this analysis (see Chapter

6).

In order to extract the result for nuclear slope parameter B, detector regions with

100% acceptance are used. In order to select events from full acceptance regions,

restrictions in ϕ ranges are introduced. Furthermore, the same ϕ ranges were used

in calculations of the simulated correction functions for compatibility, also shown in

Chapter 6.

7.1.1 |t| AND ϕ RANGES RESTRICTIONS

A restriction of the ϕ range to −0.5 ≤ ϕ ≤ 0.5 or −2.7 ≥ ϕ ≥ 2.7 leads to a full

geometric acceptance in |t|. Applying this restriction leads to the |t|-distributions
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shown in Figs. 45 to 49 and Figs. 51 to 55. According to [12] this ϕ region

needs further investigation and correction of systematic effects which are described

in Chapter 8.

7.1.2 FITTING FUNCTION

The differential elastic cross section fitted to the data is given by [11]:

dσ

dt
= C ·

[
4π(~c)2

(αG2
E

t

)2

+
1 + ρ2

16π(~c)2
·σ2
tot·eB|t|−(ρ+∆Φ)·αG

2
E

|t|
·σtot·e−

1
2
B|t|

]
, (106)

where

∆Φ

α
= ln

(
4a

B2

)
+ln
(

B2|t|
4(a+ 1

2B)

)
− ln
(

1

2
a|t|
)

+ea|t| ·
(
−γ−2 ln(a|t|)+ln

(
1

2
a|t|
))

. (107)

The treatment of the Coulomb phase, ∆Φ, is based on [86]. The total cross

section σtot = 51.6 mb [9] and ρ = 0.13 [10] were kept fixed to the values taken from

the World data, while the normalization constant, C, and the diffraction cone slope,

B, were fitted as a function of |t|. Other parameters were:

α = 137.036−1

G2
E =

( λ

λ+ |t|

)4

λ = 0.71 GeV2/c2

a = 5.6 c2/GeV2

(~c)2 = 0.389379 GeV2mb

γ = 0.5772157.

The differential cross section (see Eq. (106)) and its individual contributions are

shown as a function of |t| in Fig. 50.
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FIG. 50. Differential elastic cross section (solid line) as a function of |t|. The

contribution from the Coulomb amplitude (dotted line), the hadronic amplitude

(dash-dotted line) and the interference amplitude (dashed line) are also shown. The

fixed parameters are σtot = 51.6 mb [9], ρ = 0.13 [10] and B = 14.0 c2/GeV2. Graph

taken from [11].

7.1.3 NUCLEAR SLOPE OF THE FORWARD PEAK B

Restricted ϕ range t-distributions from selected elastic data sets were fitted with

theoretical differential cross section functions given in Eq. (50) in limited |t| ranges

shown in Table 15. Nuclear slopes of the forward peak B obtained from “pp2pp

at STAR” Run9 are presented in Table 16. Results presented are obtained from

corrected elastic |t|-distributions as explained in Chapter 6. Correction functions of

each data set and both horizontal arms are presented on Figs. 51 to 55 also.

Statistical analysis of the χ2 goodness of the fit shows that nuclear slopes from

two detector arms are in good statistical agreement with above 70% confidence

levels and can therefore be averaged. The necessity for averaging these two nuclear

slope values comes from uncertainties in |t| of the two horizontal detector arms.

Furthermore, results obtained from all data sets are cross-checked for compatibility.

χ2 statistical analysis was done to check if deviations between obtained B results is

statistically significant. This analysis is done on the sample of results obtained from
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two horizontal detector arms and on the sample of results obtained from five selected

data sets (see Table 16). This analysis shows that observed deviations from the null

hypothesis (nuclear slope B results are compatible) are not significant. Consequently,

the nuclear slope B results obtained from either two horizontal detector arms or five

data sets can be averaged.

TABLE 16. The slope parameter B results obtained from experimental data sets.

χ2 values are obtained from two different χ2(ndf = 1) and χ2(ndf = 4) distributions

with their corresponding p-values (Pχ2(ndf)) and represent tests of the null hypothesis

for the B results obtained from two detector arms and five data sets respectively.

Each p-value in this table shows non significant deviation from the null hypothesis

(observed B values in the sample are compatible).

Data set
-B (GeV/c)−2

χ2(ndf=1) Pχ2(ndf=1)
EHI-WHO EHO-WHI

0 13.8±0.4 13.7±0.4 0.03 86 %

1 14.6±0.5 14.5±0.6 0.016 90%

4 13.6±0.6 13.7±0.9 0.009 92%

6 13.6±0.7 13.3±1.0 0.06 81%

9 14.2±0.5 13.9±0.6 0.15 70%

Mean 14.0±0.2 13.9±0.3 0.076 78%

χ2(ndf=4) 2.3 1.71

Pχ2(ndf=4) 68% 79%

Average Mean 14.0±0.2

The slope parameter for “pp2pp at STAR” Run9 data sample is

B = (14.0± 0.2)
c2

GeV2

No error analysis has been applied here. The error used by the fitting program

is given by the statistics of each bin in |t|. Following figures show fits to the limited

|t|-ranges (see Table 15); −0.5 ≤ ϕ ≤ 0.5 or −2.7 ≥ ϕ ≥ 2.7 is also indicated.
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FIG. 51. Detector position set No. 0: |t|-distribution for arm EHI-WHO (top

left) and EHO-WHI (top right) after applying a cut in ϕ as described in the

text. Generated simulation correction function for arm EHI-WHO (middle left)

and EHO-WHI (middle right) after applying a cut in ϕ as described in the text.

Corrected |t|-distribution for arm EHI-WHO (bottom left) and EHO-WHI (bottom

right) after applying a cut in ϕ as described in the text.
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FIG. 52. Detector position set No. 1: |t|-distribution for EHI-WHO arm (top

left) and EHO-WHI (top right) after applying a cut in ϕ as described in the

text. Generated simulation correction function for EHI-WHO arm (middle left)

and EHO-WHI (middle right) after applying a cut in ϕ as described in the text.

Corrected |t|-distribution for EHI-WHO arm (bottom left) and EHO-WHI (bottom

right) after applying a cut in ϕ as described in the text.
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FIG. 53. Detector position set No. 4: |t|-distribution for EHI-WHO arm (top

left) and EHO-WHI (top right) after applying a cut in ϕ as described in the

text. Generated simulation correction function for EHI-WHO arm (middle left)

and EHO-WHI (middle right) after applying a cut in ϕ as described in the text.

Corrected |t|-distribution for EHI-WHO arm (bottom left) and EHO-WHI (bottom

right) after applying a cut in ϕ as described in the text.
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FIG. 54. Detector position set No. 6: |t|-distribution for EHI-WHO arm (top

left) and EHO-WHI (top right) after applying a cut in ϕ as described in the

text. Generated simulation correction function for EHI-WHO arm (middle left)

and EHO-WHI (middle right) after applying a cut in ϕ as described in the text.

Corrected |t|-distribution for EHI-WHO arm (bottom left) and EHO-WHI (bottom

right) after applying a cut in ϕ as described in the text.
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FIG. 55. Detector position set No. 9: |t|-distribution for EHI-WHO arm (top

left) and EHO-WHI (top right) after applying a cut in ϕ as described in the

text. Generated simulation correction function for EHI-WHO arm (middle left)

and EHO-WHI (middle right) after applying a cut in ϕ as described in the text.

Corrected |t|-distribution for EHI-WHO arm (bottom left) and EHO-WHI (bottom

right) after applying a cut in ϕ as described in the text.
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During careful reconstruction of |t|-distributions, further limitations of |t| ranges

were investigated to exclude ranges polluted with particles of the beam halo (so

called hot spots). From Figs. 51 to 55 we find that detecting EHO-WHI arm was

more exposed to this systematic effect. This can be seen by the increase in the

number of events at lower |t| and can not be explained by domination of the Coulomb

interaction.
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CHAPTER 8

SYSTEMATIC UNCERTAINTIES

This Chapter covers the different systematical uncertainties of this experiment

which contribute to the uncertainty of the nuclear slope of the forward peak B at
√
s = 200 GeV2/c2 in the Coulomb-Nuclear Interference |t| region (CNI). These

systematical uncertainties can be divided in two groups:

1. Uncertainties affecting the determination of kinematic variables:

four-momentum transfer squared |t| and azimuthal angle ϕ.

- Uncertainties related to the transport matrices used in this

experiment: the uncertainty in the transport matrix element

Leff .

- Beam and Roman pot geometry and/or alignment related

uncertainties:.

- Uncertainty in the beam transverse position at IP (x0, y0)

- Uncertainty of the beam angular divergence and unknown beam

crossing angle

- Beam position shift from the center at the Roman pot location

- Offsets effects due to accelerator optics elements such as kicker

magnets located before the Roman Pot locations

- Uncertainties related to the Roman pot survey

2. Uncertainties affecting the slope of the forward peak B

- All of the above plus uncertainties in the fitting parameters: the

total cross section σtot, the ratio of the real to the imaginary parts of the

scattering amplitude ρ.

- Background

- Geometrical acceptance and tracking efficiencies

- Triggering (TAC) efficiencies
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8.1 UNCERTAINTIES AFFECTING THE DETERMINATION OF

KINEMATIC VARIABLES |t| AND ϕ

8.1.1 UNCERTAINTIES IN THE TRANSPORT MATRIX ELEMENT

Leff

The effective length transport matrix element Leff , Eq. (95), is the major term in

the transport matrix. It represents the magnification of the scattering angle θ. The

uncertainty in the determination of the value of Leff is deduced from the uncertainty

of the magnetic field strength of the Q2 and Q3 focusing magnets, which is a result

of the calibration of their magnet current measurements. A correction to the magnet

field strength was determined by analyzing the position and angle of the elastic

events falling in the overlapping acceptance region of the horizontal and vertical

Roman pots. An overall correction was applied to the magnetic field strength of the

Q2 and Q3 quadrupoles of the order of 0.5%. This results in a 1.5% uncertainty in the

value of Leff . The next step is to determine how the uncertainty in Leff propagates

to the uncertainty in |t|.
Simplified transport matrix equations, which relate scattering angles θIPx and

θIPy with x and y positions at the detection region, are given in Eq. (108). This

approximation of Eqs. (95) is allowed only when transport matrix elements a11, a13,

a14 and a31, a32, a33, respectively, have very small values:

x ≈ Lxeff · θIPx
y ≈ Lyeff · θ

IP
y .

(108)

Furthermore, σLeff is an uncertainty in Leff and Lxeff and Lyeff are, by

approximation, the same. The polar angle is then given by:

θ ≈
√

(θIPx )2 + (θIPy )2 ≈
√
x2 + y2

Leff
(109)

Errors in detection positions and Leff , namely σx, σy and σLeff , propagate to the

error in scattering angle θ as follows:

σ2
θ = σ2

θx,y + σ2
θLeff

σ2
θx,y =

( δθ
δx
· σx
)2

+
(δθ
δy
· σy
)2

σ2
θLeff

=
( δθ

δLeff
· σLeff

)2

.

(110)
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With a little bit of algebra, by using Eqs. (109) and (110), the propagated

uncertainty in the scattering angle θ due to the uncertainty in the transverse positions

x, y and the uncertainty in θ due to the uncertainty in Leff can be obtained (see

Eq. (111)):

σ2
θx,y =

σ2

L2
eff

σ2
θLeff

=
(σ · σLeff )2

L2
eff

.

(111)

Consequently, by starting with the simplified equation for the four-momentum

transfer squared (−t = p2θ2) and its derivative with respect to θ scattering angle

(∆(−t) = 2p2θ ·∆θ), one can obtain the uncertainty in momentum transfer squared

t due to the transverse positions x, y and Leff :

∆(−t)
−t

=
2p2θ ·∆θ
p2θ2

=
2∆θ

θ
, (112)

where

∆θ =
σθ√

2
(113)

is the error on the average scattering angle θave = θEast+θWest

2
, assuming that errors on

θEast and θWest are uncorelated.

Using Eq. (111) we get:

∆θ

θ
=
σθx,y√

2θ
=

σLeff√
2Leff

. (114)

The uncertainty in Leff is 1%, σLeff/Leff is 0.01. Therefore, the uncertainty in

t due to the uncertainty in the value of Leff is 1.4%.

8.1.2 UNCERTAINTIES IN ROMAN POT ALIGNMENT/GEOMETRY

AND BEAM RELATED UNCERTAINTIES

The error in t due to the spatial uncertainty, σx and σy, or in other words the

error in t-scale due to the uncertainty in geometry or alignment of the Roman pot

detectors used in this experiment is given with:

∆(−t)
−t

=
2p2θ∆θ

p2θ2
=

2p∆θ

pθ
=

2p∆θ√
−t

=
2pσθ√
2
√
−t

=

√
2pσθ√
−t

, (115)

where σθ is given in Eq. (111). σ represents the uncertainty in the

alignment/geometry. The alignment of the detectors was established initially by
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using the survey information and then by introducing corrections using a study

of elastic events which fall in the overlapping acceptance region of horizontal and

vertical Roman pots, as described in [77]. The need to precisely know the positions

of detectors with respect to the beam center comes from the fact that the reference

point for the scattering angle is the beam center itself. On the other hand, the

position of the beam center is not well known. Other parameters of the beam are

unknown also, i.e. the beam transverse position at the IP (x0, y0). Additionally,

it is very difficult to separate the beam angular divergence from the beam crossing

angle. Therefore, the final correction to the survey alignment was applied to take into

account all the above-mentioned geometrical unknowns and uncertainties, including

also the survey errors. The corrections were determined by simulating the transport

of elastically scattered protons through the RHIC magnets. The effect of the magnet

apertures on the trajectories of the elastically scattered protons was studied and

compared to the data. A comparison between simulation and the data, mainly of

the distributions and their acceptance boundaries, led to “correction” shifts to the

proton positions at the detection point of (∆xEast,∆yEast) = (2.5,−1.5)mm in Yellow

(East) beam Roman pot stations only. The uncertainty of this correction is about

400 µm which, together with Eq. (115), leads to the uncertainty in t due to geometry

of about 0.002/
√
−t.

8.1.3 SYSTEMATIC UNCERTAINTY DUE TO THE BEAM ANGULAR

DIVERGENCE

The uncertainty in the t-scale is mostly due to the beam angular divergence. To

calculate the uncertainty in the t-scale from the angular beam divergence we can

start from using the expression for the momentum transfer squared t:

− t = p2θ2. (116)

Taking the first derivative with respect to θ, the uncertainty on t due to beam

angular divergence is then:

δ(−t) = 2p×
√
t× δ(θ), (117)

where the beam momentum p = 100.2 GeV/c and δ(θ) = 54 µrad based on the study

of the elastic event distributions δ(θ), calculated as a weighed average (all runs) of

the σ of the δ(θ) distribution of each elastic arm. This gives a value for δ(t) due to
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the beam angular divergence of

δ(t) ≈ 0.011

[
GeV

c

]
×
√
t. (118)

8.2 UNCERTAINTIES AFFECTING THE SLOPE OF THE

FORWARD PEAK B

8.2.1 BACKGROUNDS

The origins of the backgrounds in this experiments are related to several sources

such as beam-gas interactions, particles that originate from the beam halo or inelastic

events. If these events are not excluded from the analysis sample, they may affect

the extracted nuclear slope B value. In order to prevent this from happening, the

co-linearity condition was used during the data selection procedure. The χ2 analysis

removes a large portion of non-elastic events (see Chapter 5.1.11).

Additionally, during the estimate of the t-ranges used for fitting of the extracted

elastic t-distributions, regions of low-t were avoided due to the presence of so called

“hot spots” or in other words, regions highly populated with events that originated

from the beam halo.

8.2.2 UNCERTAINTIES IN THE FITTING PARAMETERS: ρ AND σtot

The least squares fit for the nuclear slope parameter B uses nominal values for

ρ and σtot. Our estimates of uncertainties related to variations in these parameters

are found to be δB
δρ

= 16 (c2/GeV2) and δB
δσtot

= −.016 (c2/GeV2)/mb, respectively.

Consequently, changes in ρ and σtot of about 10% results in negligible changes in

slope parameter B.

8.2.3 UNCERTAINTIES RELATED TO TRIGGERING LOGIC (TAC)

The largest contribution to the uncertainty of the slope parameter B comes from

the trigger timing cut-off. Understanding of TAC logic mechanism is of importance

for the slope extraction. The TAC cut-off, or in other words, decrease in triggering

efficiency, biases our experimental data and consequently our nuclear slope parameter

B [12].
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(a) Example of a leading edge PMT signals with respect to

the QT gate start [12].
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(b) Example of a trailing edge (early arrival) PMT signals

with respect to the QT gate start [12].

FIG. 56. Working principle of the QT and TAC electronics. Images curtesy of R.

Sikora [12].
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The triggering system is described in Chapter 3. It consisted of one scintillator,

two photomultiplier tubes and QT and TAC boards [12], for controlling our trigger

logic settings. Figs. 56(a) and 56(b) illustrate timing settings during “pp2pp at

STAR” Run9. The general idea behind the trigger setup is following:

1. QT gate is started by RHIC clock input.

2. PMT signal arrival and check whether the signal is above threshold.

3. D flip-flop device checks for the timing of arrival of the PMT signal i.e. whether

the signal was on the leading or the trailing edge.

4. If the PMT signal was on the leading edge, discriminator fires and current

source starts charging a capacitor.

5. Collected charge is converted into TAC value.

A very important property of the triggering mechanism is that even though PMT

signals are “level triggered” they go through a “D flip-flop” device which passes them

through only if the triggering point lays on their leading edge. Thus, in the case of an

early arrival of the PMT signals with respect to the gate starts, even at the moment

of the gate openings and even if they were above the set threshold, the source would

not fire and charge a capacitor and TAC will be assigned the pedestal value (see

Fig. 56(b)).

Due to early PMT signal arrivals with respect to the gate starts, i.e. early

collisions or shifted vertex etc., certain fraction of events were not triggered and

were, therefore, lost which decreased detection/tracking efficiency of our Roman pot

system.

Fig. 57 shows one example of the typical TAC signal distributions for the two

PMTs of one Roman pot detector package. The TAC trigger levels setup in

RHIC Run9 are presented in Chapter 5.1.9. Pre-set TAC ranges in Run9 were

100 ≤ TACi,j ≤ 1700 and ADC ≥ 5 for ether of the PMTs of one Roman pot

detector package. All the events that fall into this range were accepted. However,

one can observe “cut-offs” in the distribution at the levels above TACi,j ≥ 1200 and

a portion of events in which first of the PMTs had appropriate trigger levels and the

second did not (events on Fig. 57 with TACi,j ≤ 100).
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FIG. 57. TAC values from the two PMTs of one Roman pot package.

As previously described events that had early PMT signals were automatically

assigned pedestal values (TACi,j ≤ 100) and if this happened for both PMTs, these

events were lost. This loss will have direct impact on the detecting efficiency and

hence our reconstructed t-distributions and nuclear parameter B.
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FIG. 58. TAC efficiency for one Roman pot package (preliminary). Image curtesy of

R. Sikora, [12].
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A qualitative study of this effect was performed [12]. This study is based on a

GEANT4 Monte Carlo simulation of the Roman pot triggering system. An early

estimate on trigger efficiencies related to TAC “cut-offs” show that low-t ranges are

more influenced by this effect, Fig. 58.

A quantitative estimate of the uncertainty in nuclear parameter slope B from

this study and in the fitting ranges according to Table 15 is about 10%. However,

from Fig. 58, [12] it is clear that this uncertainty in B will not be symmetric. It

is estimated that the nuclear parameter slope B is less likely to take smaller values

from what is presented in Eq. (119).

8.2.4 UNCERTAINTY RELATED TO t-DEPENDENT CUTS ON ϕ

An independent analysis of the data was performed using different selections of

hits and elastic events. In particular, a t-dependent cut on ϕ was applied, which

allowed an increase in the t range and the number of accepted elastic events. This

systematical effect is tightly related to the TAC trigger inefficiency. Thus, selecting

wider ϕ cuts changes the B slope values. Obtained parameter slope values from both

analyses agree within systematical TAC trigger errors.

8.3 THE EVALUATION OF THE SYSTEMATIC UNCERTAINTIES

OF THE SLOPE PARAMETER B BASED ON MONTE CARLO

SIMULATIONS

The evaluation of the systematic errors due to the uncertainty in beam emittance,

vertex positions and spread, beam transport matrix elements, and incoming beam

angles was based on Monte Carlo simulations. These simulations used the geometry

of the experimental setup and efficiency of the detectors as an input. The largest

source for the systematic error was the uncertainty of the initial colliding beam angles.

In order to estimate systematic uncertainties from this largest single source, upper

limits on the initial beam angles obtained from the data were used and the possible

shift of the t-distribution scale was studied. The horizontal component of a possible

initial angle has a negligible effect on the t-distribution, while the vertical component

leads to an uncertainty in the absolute value of t for the reconstructed protons. This

resulted in an uncertainty on the fitted slope parameter of about 1.5% which agrees

within statistical errors.

The Monte Carlo simulation used for the estimate of systematic errors due to
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above effects follows these steps:

1. Generation:

• Random generation of t, ϕ values together with vertex position

and its spread, z0 and σz0 values. The four momentum transfer

squared |t| was generated from both uniform and also form distributions

determined by the equation for the differential elastic cross-section (see

Eq. (34)) with ρ, σtot and B parameters fixed to the expected values

obtained from extrapolation of all available experimental data. Simulated

|t| range was between 0.001 GeV2/c2 and 0.04 GeV2/c2. The ϕ angle was

generated as a uniform random distribution of numbers between 0 and 2π.

Vertex positions z0 and σz0 were generated as normal distributions with

requirement to match experimental vertex shifts and spread.

• Calculating scattering angles from generated t and ϕ

distributions and smearing of calculated angle values using the

angular beam divergence value from RHIC Run9. Angular beam

divergences were varied by changing eminence values between π ≤ ε ≤
15π.

σθ(ε)-angular beam dvergence,

θIP =
√
t/p2,

θIPx = atan(tanθcosϕ) + Gauss(0, σθ(ε))

θIPy = atan(tanθsinϕ) + Gauss(0, σθ(ε))

• Addition of crossing angles, calculating “generated” x0 and y0

beam shifts.

θIPx,y(tot) = θIPx,y(scattering) + θE,W (crossing)

xgen0 = z0 · tanθIPx (tot)

ygen0 = z0 · tanθPy (tot)

• Recalculation of transport matrix elements based on vertex z0

positions.

a12 = a12 + z0 · a11

a14 = a14 + z0 · a13

a32 = a32 + z0 · a31
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a34 = a34 + z0 · a33

• “Propagation” of scattering angles and positions to the Roman

pot detection point while checking Q
(E;W )
2 and Q

(E;W )
3 acceptances.

xRP

θRPx

yRP

θRPy

 = TM gen
(W ;E)/(H;V )


x0

θIPx

y0

θIPy


2. Reconstruction:

• Additional smearing of reconstructed positions at the detection

point to simulate uncertainty of detected particle positions.

∆xRP and ∆yRP are kicker and alignment corrections and σRPx;y is the

position uncertainty. This detected position uncertainty was determined

from the experiment and was set to be about 400µm while kicker and

alignment corrections were set as in the experiment.

x′RP = xRP + Gauss(∆xRP , σ
RP
x;y )

y′RP = yRP + Gauss(∆yRP , σ
RP
x;y )

• Calculation of scattering angles at the IP using reconstruction

TM coefficients: Ax;y, Bx;y, Cx;y, Dx;y. Scattering angles at the IP were

reconstructed using the equations below and generated crossing angles

were subtracted. Transport matrix coefficients were calculated by the

use of slightly changed transport matrices to simulate the uncertainties

in transport matrix elements. The difference was 1% in leading terms.

Furthermore, an uncertainty in (xrec0 , yrec0 ) was introduced to incorporate

any scattering angle miscalculation that may have occurred due to the

lack of knowledge of the beam positions at the IP in the reconstruction

procedure.

θIPx (rec) = Ax · x′RP +Bx · y′RP + Cx · xrec0 +Dx · yrec0

θIPy (rec) = Ay · y′RP +By · x′RP + Cy · yrec0 +Dy · xrec0

3. Uncertainties estimates: The uncertainties of individual effects such as the

beam emittance, vertex positions and spread, beam transport matrix elements,

and incoming beam angles or any of their combinations are estimated in the

t-space by plotting ∆t/tgen vs. tgen, where ∆t = trec − tgen. As previously
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described, the resulting uncertainty of all effects above and in the range of t

given in Table 15, was estimated to be of the order of up to 1.5% which is

illustrated on Fig. 59.
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FIG. 59. Resulting uncertainty due to the uncertainty in beam emittance, vertex

positions and spread, beam transport matrix elements, and incoming beam angles.

The total systematic error was calculated by adding in quadrature all the above

described systematic errors. As previously described, the major contributions

to overall uncertainty of this work are due to triggering logic and the choice of

t-dependent ϕ ranges of the selected elastic data sample. Total systematic and total

(syst. + stat.) errors are presented in Chapter 9.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

We present here the measurement of the slope parameter B in forward

proton-proton elastic scattering obtained by the “Physics With Tagged Forward

Protons At STAR”, formerly known as the “pp2pp at STAR” experiment at the

Relativistic Heavy Ion Collider (RHIC) in the squared four-momentum transfer range

0.006 ≤ |t| ≤ 0.02 GeV2/c2 at
√
s = 200 GeV/c.

The “pp2pp at STAR” experiment is designed to measure polarized pp elastic

scattering and diffractive dissociation at RHIC in the squared four-momentum

transfer range 4 × 10−4 ≤ |t| ≤ 1.3 GeV2/c
2

and 50 ≤
√
s ≤ 500 GeV/c. The

measurements of elastic scattering in the non-perturbative regime of QCD at RHIC

allows us to probe the exchanged mediators of the force, the Pomeron and its odd

C-parity partner, the Odderon. This experiment addresses one of the main unsolved

problems in particle physics: long range QCD and confinement.

The slope parameter B in the squared four-momentum transfer range |t| ≤
0.05 GeV2/c2 is sensitive to the exchange process and its

√
s-dependence allows us to

distinguish among various QCD based models of hadronic interactions. Furthermore,

observation of the B slope parameter in pp collisions at the RHIC energies will allow

comparison with some interesting features of B observed in the case of pp̄ elastic

scattering. It is of interest to see the B behavior in the RHIC energy range and

compare the values of B for the cases of pp and pp̄ elastic scattering. This interest is

due to the fact that |t| distributions of the pp and pp̄ elastic scattering become less

steep as |t| increases from 0.02 to 0.20 GeV2/c2 which was not observed at higher

energies.

At RHIC the two protons collide at six interaction regions. Since the elastic

scattering angles are very small, scattered protons stay within the beam pipes of

the accelerator. Their trajectories are determined by the accelerator “optics” until

they reach the detectors which measure their positions. The coordinates of proton

positions are related to the scattering angles at the IP by the beam transport

equations, Eqs. (95). The optimum condition for this experiment is to minimize

the dependence of the measured coordinates on the unknown collision vertex which
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is called “parallel to point focusing”. By tuning the accelerator optics, this desired

condition is achieved, which simplifies Eqs. (95).

The data presented here were recorded during several days of “pp2pp at STAR”

Run9 (run of 2009). The squared four-momentum transfer range was 0.006 ≤ |t| ≤
0.02 GeV2/c2 at

√
s = 200 GeV/c.

The identification of recorded elastic events was based on a co-linearity condition

and thus, it required simultaneous detection of two co-linear protons on either side of

the interaction point. To achieve this, the use of co-linear Roman pot detectors was

needed. Roman pots are cylindrical vessels carrying four silicon micro-strip detectors.

They can be inserted inside beam pipes without disturbing the accelerator vacuum

allowing four silicon detectors to be positioned very close to the proton beam orbits.

The layout and description of our detector system is shown in Chapter 3.

In the time span of the “pp2pp at STAR” Run9 about 30 million elastic triggers

were recorded. To reduce the contamination of the elastic event sample with tracks

from background particles we applied a range of selection criteria which reduced the

event sample, leaving about 22 million elastic events. For each event the squared

four-momentum t and azimuth ϕ were calculated and then averaged. A restriction

of the ϕ range and the dN/dt distribution corrections using Monte Carlo methods

led to a uniform geometric acceptance in a limited t-range. The determination of the

slope parameter B is confined to the t regions given in Table 15.

Least squares fits were performed to the distributions of Figs. 51 to 55 using

Eq. (106) with B and a normalization constant as free parameters. Since the total

cross section σtot and ρ parameters have not been measured in this study, we have

used values from fits to the existing pp and pp̄ data. We used σtot = 51.6 mb [9] and

ρ = 0.13 [10], which agree with the predictions from other models [87], [86], [88] and

[89].

We report our measurement of the nuclear slope parameter B obtained from

the RHIC Run9 in the squared four-momentum transfer range 0.006 ≤ |t| ≤
0.02 GeV2/c2 at

√
s = 200 GeV/c to be:

B = 14.0± 0.2 (stat.)
+1.4 (syst.)

−0.2 (syst.)
(GeV/c)−2. (119)

This result is presented in Fig. 60 together with the first slope parameter result

reported by the “pp2pp” collaboration in 2004 [13] and the world data on elastic pp

and pp̄ scattering.
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FIG. 60. Nuclear slope parameter B for this experiment (red triangle) compared

to the world pp and pp̄ data set. The asymmetric error displayed for our result

includes both statistical and systematic uncertainties, which have been computed by

a quadrature sum. The open square represents the “pp2pp” result from 2004 [13].

Evaluation of the systematic errors due to the vertex positions and spread,

uncertainty in beam emittance, beam transport matrix elements, and incoming

beam angles was based on Monte Carlo simulations (see Chapter 8). The major

contributions to the overall uncertainty of this work are due to the timing of PMT

signals [12] and the choice of a t-dependent ϕ range of the selected elastic data

sample and the uncertainty of the initial colliding beam angles. The total systematic

uncertainty was calculated by a quadrature sum of all the above systematic errors.

Total systematic and total (syst. + stat.) errors are presented in Fig. 60.
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TABLE 17. Systematic errors in B-nuclear slope parameter (δB) due to systematic

uncertainties in beam emittance (δε), vertex position and spread (δx0, δy0, δz0 and

δσz0), beam transport matrix elements (δLeff ), beam crossing angles (δθIPcross.), and

timing of PMT signals (δTACPMT ). The total systematic experimental uncertainty

has been computed by a quadrature sum.

δB c2

GeV2

δε

±0.2

δx0, δy0

δz0, δσz0

δLeff

δθIPcross.

δTACPMT +1.4

Total Syst.
+1.4

-0.2

The “Physics With Tagged Forward Protons At STAR” experiment is entering

its Phase-II* (∗ - initial stage of the “pp2pp at STAR” Phase-II). In this new

experimental phase wider kinematic coverage is expected to be achieved. The new,

redesigned vertically oriented Roman pot detectors will be mounted each at 15.2

m and 17.3 m which will allow high luminosity sampling, clean trigger and tight

constraint in exclusivity of the event and parallel running with other experiments

of the STAR detector with collaboration. Some of the physics processes to be

covered with Phase-II* are spin dependent elastic processes up to the “dip” region,

central exclusive diffraction (double Pomeron exchange), polarized 3He + p and other

processes.
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