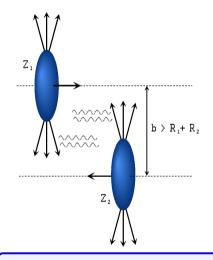
# Measurements of quarkonia photoproduction in Ultra-Peripheral Collisions at RHIC

Jaroslav Adam
For the STAR Collaboration

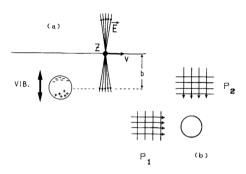
**BNL** 






12-18 January, 2020

Quarkonia as Tools 2020


## Ultra-peripheral heavy-ion collisions



- An ultra-peripheral collision (UPC) is a collision at impact parameter greater than the sum of the nuclear radii
- Electromagnetic field of protons and ions behaves like a beam of quasi-real photons
- Photon beam intensity is proportional to Z<sup>2</sup>
- Photoproduction in  $\gamma p$  and  $\gamma A$  interactions
- ullet QED processes in  $\gamma\gamma$  interactions

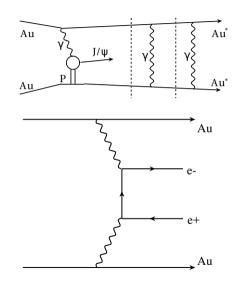
The RHIC is used as a photon-nucleus or a photon-proton collider

# Field of virtual photons by the Weizsäcker-Williams concept



Electromagnetic field of a relativistic charge creates the flux of equivalent photons which hit the target

 Lorentz contraction to the perpendicular direction, energy spectrum by Fourier transform:

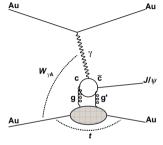

$$I(\omega,b) = \frac{1}{4\pi} |E(\omega) \times B(\omega)|$$

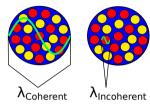
Putting in field of uniformly moving charge, we have flux of photons per unit of area:

$$N(\omega, b) = \frac{Z_1^2 \alpha_{\text{em}} \omega^2}{\pi^2 \gamma_L^2 v^2} \left[ K_1^2(x) + \frac{1}{\gamma_L^2} K_0^2(x) \right]$$

• Modified Bessel function  $K_1^2(x)$  of argument  $x = \omega b/\gamma_L v$  gives leading contribution of transversal photons in ultra-relativistic limit

# Physics processes studied in ultra-peripheral collisions



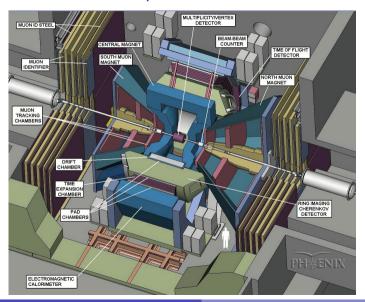


- Equivalent photons of the field can induce photon-nucleus and photon-photon interactions
- Large impact parameters are necessary to suppress short-range hadronic interactions
- Vector mesons and e<sup>+</sup>e<sup>-</sup> pairs are the only produced particles
- Nuclei typically leave intact, but may be excited by electromagnetic field to emit neutrons

Experimental signatures of a UPC event are just two tracks and forward neutron(s) in an otherwise empty detector

## Photoproduction of heavy vector mesons

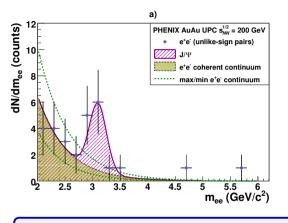
Can be described by perturbative QCD as two-gluon exchange






- Photon coupling may be coherent or incoherent
- Momentum fraction of probed gluons is  $x = (M_{J/\psi}/W_{\gamma A})^2$
- Cross section in LO is proportional to the square of gluon distribution,  $g_A(x, Q^2)$ , at the scale of,  $Q^2 = M_{A/2b}^2/4$ :

$$\frac{\mathrm{d}\sigma(\gamma A \to J/\psi A)}{\mathrm{d}t}\bigg|_{t=0} \propto \left[xg_A(x,Q^2)\right]^2$$

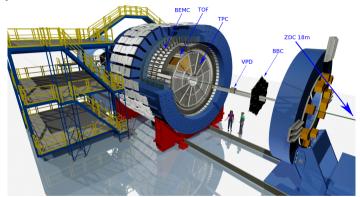

Coherent cross section is sensitive to nuclear effects of gluon density at low-x

# The PHENIX experiment at RHIC



- The first data on  $J/\psi$  in UPCs at a hadron collider taken in 2004
- ullet Measured as  ${\it J}/\psi 
  ightarrow e^+e^-$
- Central tracking in Drift Chamber
- Identification in Cerenkov Detector and Electromagnetic Calorimeter
- Neutron detection in very forward Zero-degree Calorimeters
- Veto to non-UPC activity in Beam-beam Counters

# Photoproduction of $J/\psi$ at PHENIX, Au+Au UPC at 200 GeV

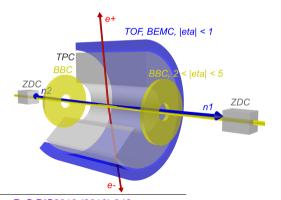



- Pairs of e<sup>+</sup>e<sup>-</sup> with at least one very forward neutron, and no other activity
- Clear separation between the  ${\it J/\psi}$  and two-photon  $\gamma\gamma \to e^+e^-$
- Limited statistics to distinguish coherent and incoherent mechanism
- Opening for electromagnetic studies at hadron colliders

The first measurement of exclusive  $J/\psi$  photoproduction and  $e^+e^-$  pairs at a hadron collider

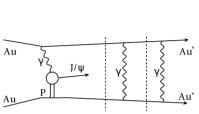
## The STAR experiment

• Central tracking and particle identification, forward counters and neutron detection




- ullet Time Projection Chamber: tracking and identification in  $|\eta|$  < 1
- Time-Of-Flight: multiplicity trigger, identification and pile-up track removal
- Barrel ElectroMagnetic Calorimeter: topology trigger and pile-up track removal
- ullet Beam-Beam Counters: scintillator counters in 2.1 <  $|\eta|$  < 5.2, forward veto
- ullet Zero Degree Calorimeters: detection of very forward neutrons,  $|\eta| > 6.6$

### Data selection for coherent $J/\psi$ in UPC at STAR


Just two tracks from a low- $p_T$  vector meson, forward neutrons, and nothing else

- Rapidity acceptance for  $J/\psi$  is |y| < 1
- Trigger requirements assume two tracks and at least one neutron in each ZDC



- Back-to-back hits in BEMC
- Limited activity in TOF
- Showers in both ZDCs
  - Energy deposition within 1/4 to 4 beam-energy neutrons
  - Full efficiency to a single neutron
- Veto from both BBCs

# Very forward neutron emission



 Excited nuclei emit neutrons in a forward direction

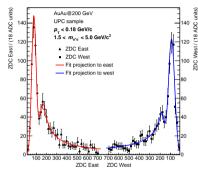



Figure: Spectrum of Analog-to-Digital counts from ZDCs

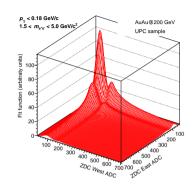
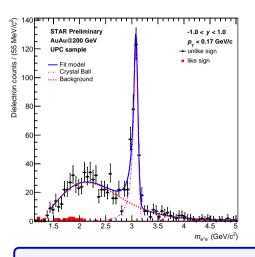



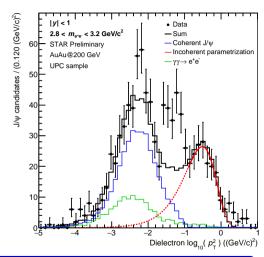

Figure: Two-dimensional fit by a sum of Gaussian and Crystal Ball functions

- ZDC signal shows peak structures for one neutron, two or more neutrons
- The neutrons are a convenient way to tag UPC events at the trigger level

#### Invariant mass of selected candidates



- Signal of  $J/\psi$  and continuum from  $\gamma\gamma \to e^+e^-$
- Minimal like-sign background
- Fit by Crystal Ball for  ${\it J/\psi}$  and empiric formula for  $\gamma\gamma \to e^+e^-$
- Parametrization for  $\gamma\gamma \to e^+e^-$  is:


$$f_{\gamma\gamma\to e^+e^-}=(m-c_1)e^{\lambda(m-c_1)^2+c_2m^3}$$

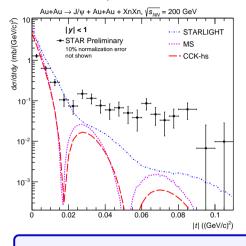
• The parametrization is effective convolution of  $\gamma\gamma\to e^+e^-$  cross section and detector effects

Mass fit is used to account for  $\gamma\gamma \to e^+e^-$  contribution in  $J/\psi$  signal

# Transverse momentum of $J/\psi$ candidates

- Dielectrons within  $J/\psi$  mass peak
- Individual components by MC templates:
  - Coherent  $J/\psi$
  - Incoherent  $J/\psi$
  - $\gamma\gamma o e^+e^-$
- MC templates are provided by STARLIGHT
- Contribution of  $\gamma\gamma \to e^+e^-$  is normalized using fit to the invariant mass distribution
- Illustrative normalization for coherent and incoherent components



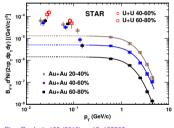

Fit to  $\log_{10}(p_T^2)$  is used to account for incoherent background in coherent signal

# Calculation of coherent cross section in bins of |t|

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|t|\mathrm{d}y} = \frac{N_{J/\psi}^{\mathrm{coh}}}{A \times \varepsilon \cdot B \cdot \mathcal{L}} \cdot \frac{1}{\Delta|t|\Delta y}$$

- $N_{J/\psi}^{coh}$  = yield of coherent  $J/\psi$  at a given  $|t| = p_T^2$ 
  - lacktriangleright Background from  $\gamma\gamma o e^+e^-$  is subtracted using invariant mass fit
  - ▶ Incoherent background is subtracted from fit to  $log_{10}(p_T^2)$
- $A \times \varepsilon$  = detector acceptance and efficiency
- $\mathcal{B}$  = branching ratio of  $J/\psi \rightarrow e^+e^-$  (PDG)
- $\mathcal{L}$  = luminosity of data sample
- $\Delta |t|$  = size of bin in |t|
- $\Delta y$  = size of bin in rapidity (= 2 for |y| < 1)

# Coherent $J/\psi$ cross section as a function of t




- STARLIGHT: Klein, Nystrand, CPC 212 (2017) 258-268
  - Vector meson dominance and Glauber approach
  - Includes effects of photon p<sub>T</sub>
- MS: Mäntysaari, Schenke, Phys.Lett. B772 (2017) 832-838
  - Dipole approach with IPsat amplitude
  - ► Scaled to XnXn using STARLIGHT
- CCK: Cepila, Contreras, Krelina, Phys.Rev. C97 (2018) no.2, 024901
  - Hot spot model for nucleons, dipole approach
  - Scaled to XnXn using STARLIGHT

- Diffractive dip around  $|t| = 0.02 \text{ GeV}^2$  is correctly predicted by MS and CCK models
- Slope below first diffractive minimum is consistent with STARLIGHT

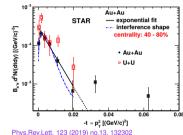
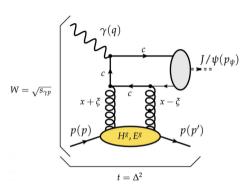

# Excess of low- $p_T J/\psi$ in peripheral collisions (UPC without U)

Figure: Observed  $J/\psi$  invariant yield



Phys.Rev.Lett. 123 (2019) no.13, 132302

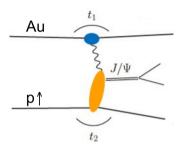
Figure: The yield after subtracting hadronic contribution

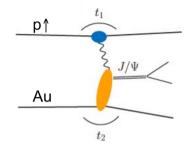



Phys. Rev. Lett. 123 (2019) no.13, 132302

- Peripheral Au+Au and U+U collisions at 200 GeV and 193 GeV respectively
- Enhancement of  $J/\psi$  at low  $p_T$
- Not expected with hadronic production mechanism
- Explained via coherent photoproduction

Contribution from coherent  $J/\psi$  photoproduction in peripheral hadronic collisions


# Photoproduction of $J/\psi$ on polarized protons

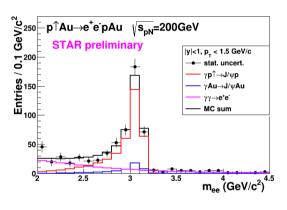


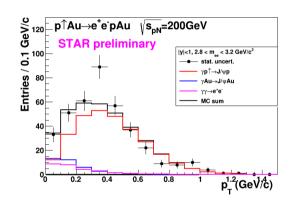

- A tool to measure Generalized Parton Distributions (GPDs)
- The GPDs are quark momentum and helicity distributions in transverse space
- Provides 3D imaging of proton
- $\bullet$  The observable is angular modulation to  $J/\psi$  photoproduction cross section
- Amount of modulation is given by GPDs

Proof of principle obtained in p†Au STAR data taken in 2015

# UPC processes in p↑+Au

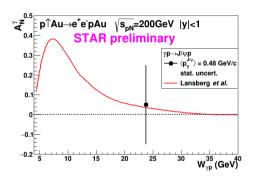






- Photoproduction on p↑ target
- Large photon flux from Au ions

- Photoproduction on Au target
- No asymmetry on unpolarized target

Photoproduction on polarized protons is dominant over  $\gamma$ Au and  $\gamma\gamma \to e^+e^-$ 


# UPC data on p↑+Au





- Mass and  $p_T$  of selected  $J/\psi$  candidates
- ullet Fit by components of  $\gamma$ p,  $\gamma$ Au and  $\gamma\gamma 
  ightarrow e^+e^-$
- $p_T$  in [0.2, 1.5] GeV considered for angular asymmetry, purity over 90%

# Results on J/psi A-gamma-N in p↑+Au UPC



- Observed angular asymmetry  $A_N^{\gamma} = 0.05 \pm 0.20$  at  $W_{\gamma p} = 23.8~{
  m GeV}$
- Result provides no discrimination about the prediction, but is a proof of principle
- More statistics at lower photon-proton energies is needed to test the models

Very first measurement is understood as a proof of principle

## Summary

- Collisions of light are now a well established experimental tool
- A large variety of processes for future measurements and colliders



