

Global polarization of Λ hyperons in Au+Au collision at $\sqrt{s_{NN}} = 54.4$ GeV with STAR

Kosuke Okubo, for the STAR Collaboration

University of Tsukuba

JPS meeting @Yamagata

Sep.18th, 2019

Introduction

- In non-central collision...
 - The created matter should exhibit rotation motion.
 - -Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
 - ▶ The strong magnetic field would appear in the initial state.
 - -D. Kharzeev, L. McLerran, and H. Warringa, Nucl. Phys. A803, 227 (2008)
 - -McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

Global polarization

- ◆Large angular momentum transfers to the spin degrees of freedom.
 - lacktriangle Particle and anti-particle's spin are aligned with angular momentum, \overrightarrow{L} .
- ◆Spin alignment by magnetic field
 - ▶ Particle's spin are aligned with magnetic field, \overrightarrow{B} .
 - Antiparticle's spin is oppositely aligned.

✓ Both may contribute

STAR

How to measure the global polarization?

◆Parity-violating decay of hyperon

▶ Daughter proton preferentially decays into the Λ 's spin (opposite for anti- Λ)

$$\Lambda \rightarrow p + \pi^-$$
 (BR:63.9%, c τ ~7.9cm)

◆Projection onto the transverse plane

The global polarization can be measured via the distribution of the azimuthal angle of the hyperon decay baryon(in the hyperon rest frame).

-STAR, PRC76, 024915(2007)

$$P_H = \frac{8}{\pi \alpha_{\rm H}} \frac{\langle \sin(\Psi_1 - \phi_p^*) \rangle}{\text{Res}(\Psi_1)}$$

 α_H : decay parameter

 Ψ_1 : 1st-order event plane

 ϕ_p^* : ϕ of the azimuthal angle of the dauhter baryon (in the hyperon's rest frame)

Motivation

- √ Positive signal at low collision energy.
- ✓ No significant difference between
 Λ and anti-Λ
- √ At lower energy, uncertainties are large...

We measured global polarization with 54GeV which has large statistics

★The gap between 39 GeV and 200 GeV data can be filled with new 54.4 GeV large statistics data set.

The STAR detector

- ▶ Time Projection Chamber (TPC)
 - Main tracking detector, $|\eta|$ <1.0, full azimuth
- ▶ Time-Of-Flight (TOF)
 - Particle identification, $|\eta|<0.9$, full azimuth
- √ Beam-Beam Counters (BBC)
 - Event plane reconstruction, $3.3 < |\eta| < 5.0$ (|ybeam| ~ 4.0)
- √ Zero Degree Calorimeters (ZDC)
 - Event plane reconstruction using spectator neutrons, $|\eta| > 6.3$

STAR

EP correlation and resolution

◆EP Correlation

$$\Psi_1 = \tan^{-1} \left(\frac{\sum w_i \sin(\phi_i)}{\sum w_i \cos(\phi_i)} \right) w_i : ADC$$

√ The correlation sign of inner and outer is different in mid-central

 $\rightarrow w_i$ of BBC was changed

$$w_i^{BBC} = \langle \cos(\Psi_1^{BBC} - \Psi_1^{ZDCE}) \rangle \times BBCADC$$

◆EP resolution

✓ Resolution was calculated by 2-subevent method

$$Res_A = Res_B = \sqrt{\langle \cos(\Psi_A - \Psi_B) \rangle}$$

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

STAR

A reconstruction

Charged particle can be identified via specific ionization energy loss in the TPC and mass estimated from the TOF

◆Proton

 $\sqrt{|n\sigma|} < 3$

 $\sqrt{0.5}$ < m²< 1.5 (GeV/c²)²

 $\sqrt{|n\sigma|} < 3$

p

◆Pion

 $\sqrt{-0.029+0.017} < m_2 < 0.04 (GeV/c_2)_2$

◆Topological cut

√ p-DCA > 0.2 cm

 $\sqrt{\pi}$ -DCA > 1.2 cm

 $\sqrt{p-\pi}$ DCA < 1.0 cm

 $\sqrt{\Lambda}$ -DCA < 0.9 cm

√ Decay length > 3.5 cm

π6000
STAR preliminary
Λ
300-40%

Minv [GeV/c²]

*These value of topological cut is 30-40%

Extract the signal

◆Invariant mass method

▶ The data was fitted with the following equation

$$\langle \sin(\Delta\phi)\rangle^{\rm obs} = (1 - f^{\rm Bg}(M_{inv}))\langle \sin(\Delta\phi)\rangle^{\rm Sg} + f^{\rm Bg}(M_{inv})\langle \sin(\Delta\phi)\rangle^{\rm Bg}$$

 $\langle \sin(\Delta\phi) \rangle^{Bg} = 0$

 $(\sin(\Delta\phi))^{Bg} = \alpha M_{inv} + \beta$

◆Event Plane method

▶ Fitting with a sine function

$$p_0(1 + 2p_1 \sin(\Psi_1 - \phi_p^*))$$

√ The difference between two
Methods was considered in the
systematic uncertainty

★Tow methods was considered in uncertainty estimation.

P_H collision energy dependence

54GeV $\sqrt{\text{First measurement at }\sqrt{\text{s}_{\text{NN}}}}$ = 54.4 GeV

 $P_H(\Lambda)$ [%] = 0.245 ± 0.170(stat)± $_{0.033}^{0.033}$ (sys)

$$P_H(\overline{\Lambda})$$
[%] = 0.444 ± 0.250(stat)± $_{0.153}^{0.152}$ (sys)

$$P_H(\Lambda)$$
[%] = 0.558 ± 0.232(stat)± $_{0.121}^{0.121}$ (sys)

$$P_H(\overline{\Lambda})$$
[%] = 0.714 ± 0.318(stat)± $_{0.225}^{0.217}$ (sys)

- Observed positive $\Lambda(\overline{\Lambda})$ global polarization
- ▶ ZDC is slightly higher than BBC

STAR Summary and outlook

Summary

- ◆ We presented first measurement of Λ global polarization in Au+Au collision at $\sqrt{s_{NN}}$ = 54 GeV
 - Positive polarization is observed
 - The result agree with model calculations
 - \blacktriangleright No significant difference between \land and anti- \land

Outlook

- Calculate dependence for charged asymmetry and azimuthal angle dependence.
- ▶ Calculate ∧ global polarization using TPC event plane -TPC: $|\eta| < 1.0$, BBC: 3.3 < $|\eta| < 5.0$, ZDC: $|\eta| > 6.3$
- Further systematic checks (e.g. acceptance correction ...)
- Beam Energy Scan II
 - · 7.7-19.6 GeV (10 times more events than BES I)
 - New detectors were installed

Back up

Data set

Data set

- Au+Au $\sqrt{s_{NN}}$ = 54.4 GeV
- Run 17 minimum bias
- Trigger ID: 580021
- Events ~ 570M(after event cut)

Event select

- $|V_z| < 40 \ cm$
- $|V_r| < 2 \ cm$
- $|V_z V_z^{vpd}| < 3 \ cm$

Track cut

- $|\eta| < 1$
- $0.15 < p_T < 5 \text{ GeV/c}$
- nHitsFit > 15
- nHitsFit/nHitsPoss > 0.52

Systematic uncertainty

- **◆Estimate systematic uncertainty**
 - ▶ Methods of the signal extraction : ~12%
 - ▶ Background P_H assumption in the invariant mass method : ~20%
 - Uncertainty from the decay parameter : ~2.0% for Λ , ~9.6% for anti- Λ
 - ✓Also, the following studies were done to check if there is no experimental effect
 - Different time period during the data taking
 - Cumulant effect

Beam Energy Scan II

Event Plane Detector(EPD)

- Improve event plane resolution, 2.1 < $|\eta|$ < 5.1

▶ inner TPC(iTPC)

Higher statistics data are being taken!

- $p_T > 60 \text{ MeV/c}$
- Extension from $|\eta|$ <1 to $|\eta|$ <1.5

endcap TOF(eTOF)

- Extends forward PID capability, -1.6 < η < -1.1
- ◆7.7-19.6 GeV(10 times more events than BES I)