Supported in part by

Differential measurement of global polarization of Λ hyperons at RHIC-STAR experiment

Kosuke Okubo for the STAR collaboration University of Tsukuba JPS meeting 8th, Sep, 2022

- ◆In non-central collisions...
 - The created matter should exhibit strong vorticity.
 - -Z.-T.Liang and X.-N. Wang, PRL94, 102301
 - The strong magnetic field would appear in the initial state.
 - -D. Kharzeev, L. McLerran, and H. Warring, Nucl. Phys. A803, 227 (2008)

-McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

- Large orbital angular momentum transfers to the spin degrees of freedom:
 - Quarks and anti-quarks' spins are aligned with the angular momentum.
- Spin alignment by magnetic field:
 - Quarks and anti-quarks get aligned in the opposite direction due to the opposite signs of their magnetic moments.

STAR How to measure the global polarization?

Parity-violating decay of hyperon

 Daughter proton preferentially decays along the Λ's spin (opposite for anti-Λ).

 $\Lambda \rightarrow p + \pi^-$ (BR:63.9%, c τ ~7.9cm)

 Polarization can be measured via the distribution of the azimuthal angle of the daughter proton (in the hyperon rest frame).

Projection onto the transverse plane

$$P_{H} = \frac{8}{\pi \alpha_{H}} \frac{\langle \sin(\Psi_{1} - \phi_{p}^{*}) \rangle}{Res(\Psi_{1})}$$

- STAR, PRC76, 024915(2007)

 α_{H} : decay parameter ($\alpha_{\Lambda} = 0.732 \pm 0.014$)

 $\Psi_1: 1^{st}$ -order event plane

 ϕ_p^* : azimuthal angle of the daughter proton in the Λ 's rest frame

P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys.2020, 083C01 (2020).

STAR Motivation

✓The slope of the directed flow at mid-rapidity is likely correlated with the vorticity.

- Global polarization and the negative slope of directed flow of pions have a similar collision energy dependence.

The STAR detector

TPC

TOF

- Time Projection Chamber (TPC)
 - Main tracking detector, $|\eta| < 1.0$, full azimuth
- Time-Of-Flight (TOF)
 - Particle identification, $|\eta| < 0.9$, full azimuth
- Beam-Beam Counters (BBC)
 - Event plane reconstruction , 3.3<| η |<5.0
- Zero Degree Calorimeters (ZDC)
 - Event plane reconstruction using spectator neutrons, $|\eta|$ >6.3

ZDC

BBC

STAR Collision energy dependence of P_H

✓ Global polarization of Λ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 27, 54.4 GeV.

- ✓The increasing trend with the decreasing of collisions energy.
 - This result also has similar behavior with the slope of the directed flow of pion.

• First order flow vector q_1 quantifies the magnitude of directed flow :

STAR Event plane reconstruction

• The event plane resolution was calculated by 2-subevent method:

$$Res_A = Res_B = \sqrt{\langle \cos(\Psi_A - \Psi_B) \rangle}$$

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

- ✓In peripheral collisions, the event plane resolution of ZDC is better than that of BBC.
- ✓The event plane resolution depends little on q_1 .

STAR Global polarization and directed flow

- ✓The negative slope of directed flow of pions has similar trend with global polarization of Λ hyperons.
- ✓The behavior of the slope of directed flow depends on particle species.

Summary

 \checkmark First order flow vector q_1 was measured in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 54.4 GeV.

✓ Event plane resolution was estimated with q_1 selection.

Outlook

✓ Measure the q_1 dependence of global polarization of Λ at $\sqrt{s_{\rm NN}}$ = 54.4 GeV.

√We have completed the data taking of BES II + FXT.

- Large statistics at low energies.
- Good event plane resolution.

Collider mode data at BES II

Beam Energy	$\sqrt{s_{\rm NN}}$	$\mu_{ m B}$	Number Events	Date
(GeV/nucleon)	(GeV)	(MeV)	Requested (Recorded)	Collected
13.5	27	156	(560 M)	Run-18
9.8	19.6	206	400 M (582 M)	Run-19
7.3	14.6	262	300 M (324 M)	Run-19
5.75	11.5	316	230 M (235 M)	Run-20
4.59	9.2	373	160 M (162 M)	$\operatorname{Run-20+20b}$
3.85	7.7	420	100 M (100 M)	Run-21

Fixed-target mode data at BES II

Beam Energy	$\sqrt{s_{\rm NN}}$	$\mu_{\rm B}$	Run Time	Number Events	Date
(GeV/nucleon)	(GeV)	(MeV)		Requested (Recorded)	Collected
31.2	7.7 (FXT)	420	0.5+1.1 days	100 M (50 M + 112 M)	Run-19+20
19.5	6.2 (FXT)	487	1.4 days	100 M (118 M)	Run-20
13.5	5.2 (FXT)	541	1.0 day	100 M (103 M)	Run-20
9.8	4.5 (FXT)	589	$0.9 \mathrm{~days}$	100 M (108 M)	Run-20
7.3	3.9 (FXT)	633	1.1 days	100 M (117 M)	Run-20
5.75	3.5 (FXT)	666	$0.9 \mathrm{~days}$	100 M (116 M)	Run-20
4.59	3.2 (FXT)	699	2.0 days	100 M (200 M)	Run-19
3.85	3.0 (FXT)	721	4.6 days	100 M (259 M)	Run-18

