Supported in part by

Global polarization of A hyperons in **RHIC Beam Energy Scan II from STAR**

Kosuke Okubo for the STAR collaboration University of Tsukuba JPS meeting 15, Mar, 2022

STAR Introduction

♦In non-central collisions...

-Z.-T.Liang and X.-N. Wang, PRL94, 102301 -D. Kharzeev, L. McLerran, and H. Warring, Nucl. Phys. A803, 227 (2008) -McLerran and Skokov, Nucl. Phys. A929, 184 (2014) Ĺ

The created matter should exhibit strong vorticity. The strong magnetic field would appear in the initial state.

Kosuke Okubo, JPS2022, 2022/3/15

- Large orbital angular momentum transfers to the spin degrees of freedom:
 - -Particles and anti-particles' spins are aligned with the angular momentum.
- Spin alignment by magnetic field:
 - -Particles and anti-particles get aligned in the opposite direction due to the opposite signs of their magnetic moments.

Both are considered to contribute to the global polarization.

STAR How to measure the global polarization?

Parity-violating decay of hyperon

Daughter proton preferentially decays along the Λ 's spin (opposite for anti- Λ).

 $\Lambda \rightarrow p + \pi^-$ (BR:63.9%, c τ ~7.9cm)

Polarization can be measured via the distribution of the azimuthal angle of the daughter proton (in the hyperon rest frame).

Projection onto the transverse plane

 $\frac{\langle \sin(\Psi_1 - \Psi_p) \rangle}{\langle \sin(\Psi_1 - \Psi_p) \rangle}$

 $Res(\Psi_1)$

- $\Psi_1: 1^{st}$ -order event plane
 - ϕ_p^* : azimuthal angle of the daughter proton in the Λ 's rest frame

- STAR, PRC76, 024915(2007)

 $\pi \alpha_H$

 α_H : decay parameter ($\alpha_{\Lambda} = 0.732 \pm 0.014$)

P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys.2020, 083C01 (2020).

Kosuke Okubo, JPS2022, 2022/3/15

STAR Motivation

A global polarization has been measured from $/s_{\rm NN}$ = 7.7 GeV to 5.02 TeV.

 \checkmark Polarization increases toward lower collision energy.

 \checkmark No significant difference between Λ and anti- Λ .

✓ Consistent with AMPT and hydrodynamics models (UrQMD provides the initial condition of vHELLE in this case) within uncertainties.

▶ New analysis of global polarization at $\sqrt{s_{NN}}$ = 3.0, 7.2 **GeV** with fixed-target experiment.

 \checkmark These allow to explore the behavior in the low energy.

Kosuke Okubo, JPS2022, 2022/3/15

STAR The STAR detector

- **Time Projection Chamber (TPC)** •
- Time-Of-Flight (TOF)
- **Event Plane Detector (EPD)**

STAR STAR fixed-target program

✓The gold target was installed inside the beam pipe at z = 2.0 m.

✓Target is 0.25 mm thick and ~1% interaction probability.

	$\sqrt{s_{NN}}$ = 3.0 GeV	$\sqrt{s_{NN}} = 7.2 \text{ GeV}$
Beam rapidity	1.05	2.02
Number of events	253M	209 M

Beam pipe

Kosuke Okubo, JPS2022, 2022/3/15

STAR Event Plane resolution

✓Event plane resolution was calculated by **3-subevent method.**

$$\cos([\Psi_1^A - \Psi_1^B])) = \langle \cos([\Psi_1^A - \Psi_1^{\text{true}}]) \rangle \langle \cos([\Psi_1^{\text{true}} - \Psi_1^B]) \rangle$$
$$= \sigma_n^A \sigma_n^B$$

$$Res(\Psi_1^A) = \sqrt{\frac{\langle \cos([\Psi_1^A - \Psi_1^B]) \rangle \langle \cos([\Psi_1^A - \Psi_1^C]) \rangle}{\langle \cos([\Psi_1^B - \Psi_1^C]) \rangle}}$$

$$0.35$$

A : EPD most inner 4 rings B : TPC ($-0.5 < \eta < 0$) C : TPC ($-1.5 < \eta < -1.0$)

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

√First-order event plane

First,

$$w_i^{\text{TPC}} = \eta - y^{\text{mid}} \quad w_i^{\text{EPD}} = n\text{Mip}$$

NIM A968 (2020) 163970

arxiv:1912.05243

Res{Ψ₁}

Second,
$$w_i = \langle \cos(\phi^A - \Psi_1) \rangle$$
 A : pion or proton

STAR A reconstruction

 Charged particles can be identified via specific ionization energy loss in the TPC and mass estimated from TOF.

* Proton	*Pion
$ n\sigma < 3$	$\sqrt{ n\sigma } < 3$
$\sqrt{0.5} < m^2 < 1.5 (\text{GeV/c}^2)^2$	$√-0.06 < m^2 < 0.1$ (Ge
Topological cuts	
√p-DCA > 0.4 cm	√Λ-DCA < 0.8 cm
√π-DCA > 1.6 cm	✓Decay length > 5.0 cm
√p-π DCA < 1.1 cm	(Centrality 30-40%)

These values of topological cuts are slightly tuned depending on centrality.

Kosuke Okubo, JPS2022, 2022/3/15

STAR Collision energy dependence of Ph

✓First measurements in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3.0, 7.2 GeV.

 \checkmark New HADES results in Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV and Au+Au $\sqrt{s_{NN}}$ = 2.4 GeV.

The increasing trend with the decrease of collisions energy persists down to $\sqrt{s_{\rm NN}}$ = 2.4 GeV.

Kosuke Okubo, JPS2022, 2022/3/15

✓Polarization increases in more peripheral collisions at both energies!

Rapidity dependence of Ph

M. S. Abdallah et al. (STAR Collaboration) Phys. Rev. C 104, L061901

STAR

✓Polarization is expected to depend on rapidity but the prediction is different among models.

The result does not show significant rapidity dependence within our acceptance.

✓Polarization in large rapidity region can be explored in the future with iTPC and forward upgrade (2023+2025).

STAR Transverse momentum dependence of PH

✓ Possible expectations:

- of the collisions.
- -decrease at high $p_{\rm T}$ due to jet fragmentation.

 \checkmark No significant $p_{\rm T}$ dependence seen in data.

-decrease at low $p_{\rm T}$ due to the smearing effect caused by scattering at the later stage

J. Adams et al. (STAR), PRC98, 14910 (2018)

Kosuke Okubo, JPS2022, 2022/3/15

Summary

+We presented measurements of Λ global polarization in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3.0, 7.2 GeV from STAR in fixed target mode.

- Positive polarization is observed.
- Λ polarization increases at lower collision energies.
- Increasing trend towards peripheral collisions as expected.
- No significant dependence on $p_{\rm T}$ and rapidity is observed.

Outlook

- Measurement of anti- Λ polarization at 7.2 GeV.
- \checkmark We completed the data taking of BES II + FXT.

 $-\sqrt{s_{\text{NN}}} = 3.0 \text{ GeV} : 337 \text{M(now)} \rightarrow \text{about 2B}.$

 $-\sqrt{s_{\text{NN}}} = 7.2 \text{ GeV} : 267 \text{M(now)} \rightarrow 267 \text{M} + \text{about } 400 \text{M}.$

Collider mode data at BES II

Beam Energy	$\sqrt{s_{\rm NN}}$	$\mu_{ m B}$	Number Events	Dat
(GeV/nucleon)	(GeV)	(MeV)	Requested (Recorded)	Collec
13.5	27	156	(560 M)	Run-
9.8	19.6	206	400 M (582 M)	Run-
7.3	14.6	262	300 M (324 M)	Run-
5.75	11.5	316	230 M (235 M)	Run-
4.59	9.2	373	160 M (162 M)	Run-20
3.85	7.7	420	100 M (100 M)	Run-

Fixed-target mode data at BES II

V									
Beam Energy	$\sqrt{s_{\rm NN}}$	$\mu_{ m B}$	Run Time	Number Events					
(GeV/nucleon)	(GeV)	(MeV)		Requested (Recorded)					
31.2	7.7 (FXT)	420	$0.5{+}1.1 \mathrm{~days}$	$100 \text{ M} (50 \text{ M}{+}112 \text{ M})$	Γ				
19.5	6.2 (FXT)	487	$1.4 \mathrm{days}$	100 M (118 M)					
13.5	5.2 (FXT)	541	$1.0 \mathrm{day}$	100 M (103 M)					
9.8	4.5 (FXT)	589	$0.9 \mathrm{~days}$	100 M (108 M)					
7.3	3.9 (FXT)	633	$1.1 \mathrm{~days}$	100 M (117 M)					
5.75	3.5 (FXT)	666	0.9 days	100 M (116 M)					
4.59	3.2 (FXT)	699	2.0 days	100 M (200 M)					
3.85	3.0 (FXT)	721	4.6 days	100 M (259 M)					
			-		-				

Kosuke Okubo, JPS2022, 2022/3/15

Back up

STAR Pile up rejection

\checkmark Pile up events are removed using start timing (T0) estimated using TOF and TPC.

- using our technique.

Kosuke Okubo, JPS2022, 2022/3/15

STAR Extraction of the polarization signal

✓Observed polarization is more sharply peaked near Λ mass and it dips on the sides mass peak.

The width of the invariant mass depends on the daughter's azimuthal emission angle relative to the Λ .

Discussed in more detail ; M. S. Abdallah et al. (STAR Collaboration) Phys. Rev. C 104, L061901

17

Kosuke Okubo, JPS2022, 2022/3/15

Extract the polarization signal STAR

✓ Calculate polarization each $\phi_{\Lambda} - \phi_{p}^{*}$ bin.

- Invariant mass method
 - The data was fitted with the following formula.

 $\langle \sin(\Delta\phi) \rangle^{\text{obs}} = (1 - f^{\text{Bg}}(M_{inv})) \langle \sin(\Delta\phi) \rangle^{\text{Sg}} + f^{\text{Bg}}(M_{inv}) \langle \sin(\Delta\phi) \rangle^{\text{Bg}}$

$$\Delta \phi = \Psi_1 - \phi_p^*$$
$$f^{Bg}(M_{inv}) = f(M_{inv}^{Bg})/f(M_{inv}^{obs})$$

✓ Observed polarization is described as follows.

$$\frac{8}{\pi\alpha_H}\frac{1}{R^1_{EP}}\left\langle\sin\left(\Psi_1-\phi_p^*\right)\right\rangle^{Sg}=P_\Lambda^{true}+c\nu_1\sin\left(\phi_\Lambda-\phi_p^*\right)$$

STAR Systematic uncertainty at 7.2 GeV

- ✓ Different topological cut(~1.6%)
 - -Ten different cuts are applied.

- \checkmark Method comparison for extracting polarization signal (~17.0%)
 - -Invariant mass method
 - -Event plane method
- \checkmark Background assumption for polarization in the invariant mass method(~0.4%)
- ✓ Uncertainty from decay parameter α_{H} (~3.2%)
- ✓Cumulant correction(~3.8%)
- \checkmark Efficiency correction(~8.2%)

• $p-DCA\pm0.1cm$ • Λ -DCA \pm 0.1cm • π -DCA \pm 0.1cm • Decay length±0.5cm • p- π DCA±0.1cm

✓ UrQMD model predicts that kinetic/thermal vorticity is the largest around 3 GeV.

