Net-proton C₄ measurement at $\sqrt{s_{NN}} = 54.4$ GeV in Au+Au collisions at the RHIC-STAR experiment

Yuri Sato (for the STAR Collaboration) The Physical Society of Japan 2019 Autumn Meeting Yamagata Univ. Kojirakawa Campus 2019.9.18

Physics Motivation

✓ Lattice QCD calculation has predicted that phase transition around $\mu_{\rm B}$ =0 is "**smooth crossover**". From Y.Aoki et al., Nature, 443, 675 (2006)

- We search for the 1st-order phase transition and the Critical Point.
- ✓ Fluctuations of conserved quantities are considered to be a powerful tool to search for the critical point.

Beam Energy Scan@STAR (~2014, 7.7-200 GeV)

Non-monotonic behavior of net-p $\kappa\sigma^2$ at low energy appeared, which could be a signature of the critical point.

Fluctuation Analysis

 \checkmark Cumulants up to the 4th-order are written by

 $C_3 = \langle \delta N^3 \rangle$ $C_4 = \langle \delta N^4 \rangle - 3 \langle \delta N^2 \rangle^2, \ \tilde{\epsilon}$ where

$$\delta N = N - \langle N \rangle$$

 Cumulant ratios are related to thermodynamic susceptibilities as,

$$C_3/C_2 = S\sigma = \chi^3/\chi^2$$
$$C_4/C_2 = \kappa\sigma^2 = \chi^4/\chi^2$$

✓ Higher order moments are more sensitive to correlation length.

From M.A.Stephanov, Phys. Rev. Lett. 102, 032301

Data Analysis

✓Dataset = Au+Au 54.4 GeV year 2017

✓# of Events = 553 M

✓Event Selection

- |Vz|<30 cm
- |Vr|<2cm
- Pile-up events were removed.
- ✓ Collision centrality is determined by Refmult3* to avoid autocorrelation effect.
- ✓Track cut
 - nHitsFit>20, nHitDedx>5
 - dca<1 cm
 - 0.4<p_<2.0 GeV/c
 - |y|<0.5
- ✓ Proton identification was done using TPC and TOF**.

*Refmult3 ··· charged particle multiplicity
excluding protons and antiprotons
measured in |η| < 1
**PID ···
0.4<pT<0.8 GeV/c ⇒ Only TPC
0.8<pT<2.0 GeV/c ⇒ TPC and TOF</pre>

STAR 🖈

Centrality dependence of Cumulants

✓ Cumulants up to the 4th-oreder increases with number of participants.

Centrality dependence of $\kappa\sigma^2$

✓ Experimental results are below Skellam expectation (=1) and hadron transport models.

Energy Dependence of $\kappa\sigma^2$

 C₄/C₂ values at 54.4 GeV follows the energy dependence observed in other energies.

STAR 🛧

Perspective for BES-II

Beam Energy Scan II (2019~)

Lower collision energies (<20 GeV)
New detectors (EPD, eTOF, iTPC)
10-20 larger statistics than BES-I

- ✓ The Event Plane Detector (EPD) was installed in 2018 in forward rapidity region ($2.1 < |\eta| < 5.1$).
- ✓ When collision centrality is determined by EPD, autocorrelation effect is thought to be reduced because of η gap between EPD and TPC.

STAR 🖈

Autocorrelation Effect

- ✓According to previous UrQMD studies, auto-correlation effect is considered to make fluctuations smaller.
 - Fluctuations with centrality determined by multiplicity including protons are below the results by excluding protons.
 - When centrality is determined by particles in forward rapidity region (corresponds to EPD), fluctuations are larger than results by TPC centrality.

Performance of EPD in Au+Au 27 GeV STAR 🖈

←Inner Rings

Refmult3

Outer Rings→

- ✓Although positive correlation between EPD and TPC appeared in outer rings, anticorrelation was seen in inner rings because of spectators.
- ✓When centrality is determined by EPD, less selfcorrelation effect is expected.

Neural Network Approach to Centrality Determination

✓Artificial Neural Network is a method of Machine Learning, inspired by biological neural network. It "learns" by updating weights and biases between each neuron.

Prospective for Centrality determination by EPD STAR 🛧

JPS 2019 Autumn Meeting

Summary & Outlook

≻<u>Summary</u>

- ✓Net-proton cumulants up to 4th-order at Au+Au 54.4 GeV was presented.
- ✓Perspective for centrality determination using EPD was shown.
- ≻<u>Outlook</u>
 - ■Neural network approach will be used to determine collision centrality with EPD NMip.
 - ■Fluctuations of conserved quantities will be measured with new centrality determination, and compared to the previous results.

Back Up

Efficiency Correction

• Efficiency correction for cumulants are applied with track-by-track method.

$$\left\langle Q\right\rangle_{\rm c} = \langle q_{(1,1)}\rangle_{\rm c},$$

 $\langle Q^2 \rangle_{\rm c} = \langle q_{(1,1)}^2 \rangle_{\rm c} + \langle q_{(2,1)} \rangle_{\rm c} - \langle q_{(2,2)} \rangle_{\rm c},$

$$\langle Q^3 \rangle_{\rm c} = \langle q^3_{(1,1)} \rangle_{\rm c} + 3 \langle q_{(1,1)} q_{(2,1)} \rangle_{\rm c} - 3 \langle q_{(1,1)} q_{(2,2)} \rangle_{\rm c} + \langle q_{(3,1)} \rangle_{\rm c} - 3 \langle q_{(3,2)} \rangle_{\rm c} + 2 \langle q_{(3,3)} \rangle_{\rm c},$$

$$\begin{split} \left\langle Q^{4} \right\rangle_{\rm c} &= \langle q_{(1,1)}^{4} \rangle_{\rm c} + 6 \langle q_{(1,1)}^{2} q_{(2,1)} \rangle_{\rm c} - 6 \langle q_{(1,1)}^{2} q_{(2,2)} \rangle_{\rm c} + 4 \langle q_{(1,1)} q_{(3,1)} \rangle_{\rm c} + 3 \langle q_{(2,1)}^{2} \rangle_{\rm c} \\ &+ 3 \langle q_{(2,2)}^{2} \rangle_{\rm c} - 12 \langle q_{(1,1)} q_{(3,2)} \rangle_{\rm c} + 8 \langle q_{(1,1)} q_{(3,3)} \rangle_{\rm c} - 6 \langle q_{(2,1)} q_{(2,2)} \rangle_{\rm c} \\ &+ \langle q_{(4,1)} \rangle_{\rm c} - 7 \langle q_{(4,2)} \rangle_{\rm c} + 12 \langle q_{(4,3)} \rangle_{\rm c} - 6 \langle q_{(4,4)} \rangle_{\rm c}, \end{split}$$

• q(r,s) is defined by

$$q_{(r,s)} = \sum_{j=1}^{n_{\text{tot}}} \frac{a_j^r}{\varepsilon_j^s},$$

From X.Luo and T.Nonaka, "Efficiency correction for cumulants of multiplicity distributions based on trackby-track efficiency", Phys. Rev. C 99, 044917 (2019)

Estimation of Uncertainties

- ✓In order to estimate systematic errors, some cuts below were varied.
 - dca
 - Track quality (nHitsFit, nHitDedx)
 - Particle Identification
 - Tracking efficiecy
- ✓ Statistical errors were estimated by Bootstrap method.

From B. Efron, R. Tibshirani, "An introduction to the bootstrap", Chapman Hall (1993)

Centrality Bin Width Correction

✓ In order to reduce Volume Fluctuation Effect (VF), Centrality Bin Width Correction has been applied in fluctuation measurements.

$$C_n = \frac{\sum_r n_r C_r}{\sum_r n_r} = \sum_r w_r C_{(n,r)}$$

✓VF makes fluctuations larger according to UrQMD model studies.

From X.Luo et al., J. Phys. G: Nucl. Part. Phys. 40 105104 (2013)

BES-I Summary/Plan for BES-II

√s _{NN}	Statistics(M)	Year
7.7	~3	2010
11.5	~6.6	2010
14.5	~10	2014
19.6	~15	2011
27	~32	2011
39	~86	2010
62.4	~45	2010
200	~238	2010

Beam Energy	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} ({\rm MeV})$	Run Time	Number Events	
(GeV/nucleon)					
9.8	19.6	205	4.5 weeks	400M	
7.3	14.5	260	5.5 weeks	300M	
5.75	11.5	315	5 weeks	230M	
4.55	9.1	370	9.5 weeks	160M	
3.85	7.7	420	12 weeks	100M	
31.2	7.7 (FXT)	420	2 days	100M	
19.5	6.2 (FXT)	487	2 days	100M	
13.5	5.2 (FXT)	541	2 days	100M	
9.8	4.5 (FXT)	589	2 days	100M	
7.3	3.9 (FXT)	633	2 days	100M	
5.75	3.5 (FXT)	666	2 days	100M	
4.55	3.2 (FXT)	699	2 days	100M	
3.85	3.0 (FXT)	721	2 days	100M	
	Run 19	Run 20	Run 21		

Centrality dependence of Cumulant ratios

Centrality dependence of Cumulant ratios

Neural Network

- ✓Artificial Neural Network is a method of Machine Learning, inspired by biological neural network. It "learns" by updating weights and biases between each neuron.
- ✓Can we predict collision centrality by EPD information using NN?

Perspective for BES-II

Beam Energy Scan II (2019~)

- □Lower collision energies(<20 GeV)
- ■New detectors(EPD, eTOF, iTPC)
- □10-20 larger statistics than BES-I
- ✓ The Event Plane Detector(EPD) was installed in 2018 in forward rapidity region($2.1 < |\eta| < 5.1$) at STAR detectors.
- ✓ When centrality is determined by EPD, auto-correlation effect is thought to be reduced because of η -gap between EPD and TPC($|\eta| < 1.0$).
- ✓ Previous fluctuation results are possibly biased by the auto-correlation effect.

