

Azimuthal angle dependence of pion femtoscopy in $\sqrt{s_{NN}} = 200$ GeV Cu+Au collisions at STAR

Yota Kawamura for the STAR collaboration October 27th, 2018 JPS/APS meeting @ Hawaii

STAR HBT interferometry

- HBT can scope the source size at kinetic freeze-out
 - ✓ Measure quantum interference between two identical particles

STAR Collaboration, Phys. Rev. Lett. 87 (2001) 82301

 $C(q) = \frac{N(q)}{D(q)}$ • Event mixing

N: pair distribution in same event (real)

D: pair distribution in different event (mix)

Experimentally

- Theory $C_2 = \frac{P(p_1, p_2)}{P(p_1)P(p_2)} \approx 1 + \exp(-R^2 Q_{inv}^2)$ $\vec{q} = \vec{p_2} - \vec{p_1} \quad Q_{inv} = \sqrt{q_x^2 + q_y^2 + q_z^2 - q_0^2}$
- Make correlation function as a function of relative momentum (q)
- We can extract the source radius by fitting with theoretical formula.

• Bertsch-Pratt Parameterization (Phys. Rev. D 33, 72, Phys. Rev. C 37, 1896 (1988))

- 3 dimensional radii use
- ✓ R_{long} : Source size parallel to the beam direction
- $\checkmark R_{out}$: Source size parallel to the pair transverse momentum (k_T)
- $\checkmark R_{side}$: Source size perpendicular to R_{out} and R_{long}

✓ Fitting function:

$$C(\vec{q}) = N[(1 - \lambda) + \lambda K(\vec{q})(1 + G(\vec{q}))]$$

$$G(\vec{q}) = \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$$

N : Normalization , K(q) : Coulomb correction, λ : Correlation strength

✓ Correlation function is expanded to 3 dimensional (out , side and long axis)
 ✓ Extract radii parameters 3 dimensionally

 Directed flow is generated by the interaction between spectator and participant particles.

 \checkmark Quantified by the 1st harmonic in the Fourier expansion as v_1

$$v_1 = \left\langle \cos(\phi - \Psi_1) \right\rangle$$

 \checkmark v₁(η) is crossing 0 by 3 times at around midrapidity, forward and backward rapidity \checkmark The direction of flow have different sign between participant and spectator

STAR HBT radii w.r.t. Ψ_1

- One can predict one of the origin of directed flow is the "tilt of the medium"
- HBT measurement w.r.t. Ψ₁ can scope directly this "tilt" by including cross terms in fit function.
- ✓ Fit function with cross term:

$$\begin{split} C(\vec{q}) &= N[(1-\lambda) + \lambda K(\vec{q})(1+G(\vec{q}))]\\ G(\vec{q}) &= \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{out} q_{side} - 2R_{ol}^2 q_{out} q_{long} - 2R_{sl}^2 q_{side} q_{long}) \end{split}$$

- Important parameters: Rol, Rsl
- If final source is tilted, R_{ol} and R_{sl} cross terms will have oscillation w.r.t. Ψ_1

- Experimentally, source tilt has been only measured at low energies.
- Tilt angle is inversely proportional to the beam energy
- In RHIC energy (200 GeV), source tilt value is expected nearly 0 or signal is very small.
 ✓ Measure HBT w.r.t Ψ₁ and scope tilt signal using both Au+Au and Cu+Au in 200 GeV

✓ Cu+Au have initial density asymmetry...

-> How does it affect HBT measurement ?

STAR The STAR detector

Time Projection Chamber (TPC)

- Main tracking detector, $|\eta| < 1.0$, full azimuth
- Zero Degree Calorimeter (ZDC)
- |η| > 6.3
- Measure spectator neutron
- event plane reconstruction using spectator neutrons

Beam-Beam Counters (BBC)

- 3.3 < |η| < 5
- event plane reconstruction using participants

TOF & TPC detector ✓ Use PID (particle identification) TPC (dE/dx) STAR Preliminary

TOF (time of flight)

- Cu+Au 200 GeV, Au+Au 200 GeV
- Number of events: Cu+Au ~ 45 M Au+Au ~ 200 M
- Correlation function

 - $C(q) = rac{N(q)}{D(q)}$ N: pair distribution (real) D: different event pair distribution (mix)
- Estimate coulomb interaction correction factor K(q) : coulomb correction
- Fit correlation function and extract radii parameters

 $C(\vec{q}) = N[(1-\lambda) + \lambda K(q)(1+G(\vec{q}))]$

✓ Azimuthally-integrated analysis $G(\vec{q}) = \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$ ✓ Azimuthal-angle-dependent HBT analysis

 $G(\vec{q}) = \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{out} q_{side} - 2R_{ol}^2 q_{out} q_{long} - 2R_{sl}^2 q_{side} q_{long})$

 Event plane reconstruction ✓ ZDC east + west plane used ✓ ZDC east + west plane is defined based of the sign of ZDC west ($\eta > 0$) (with flipped sign of ZDC east ($\eta < 0$))

Cu+Au √s_{NN} = 200 GeV

Out

0.1

STAR Preliminary

1.4E

1.2

1.1E

0.9E

-0.1

STAR N_{part} dependence ✓ Cu+Au 200 GeV

- N_{part}^{1/3} corresponds to the source radius at the collision time.
- Checked HBT radii $\propto N_{\text{part}}^{1/3}$
- HBT radii have an approximate common linear dependence on N_{part}^{1/3} regardless of system size differences.

STAR HBT radii w.r.t. Ψ₁ in Au+Au

10

- R_{out}, R_{side} and R_{os} have a 2nd-order oscillation due to the elliptic source shape with respect to Ψ₁
- Small (but ≠ 0) 1st-order oscillation can be found in R_{ol} and R_{sl} due to source tilt signal.
- These results indicate that the source shape at freeze-out is tilted even at top RHIC energy.

STAR HBT radii w.r.t. Ψ₁ in Cu+Au

11

- For all extra radii, oscillation is small as compared to Au+Au results due to poor event plane resolution
- In R_{ol}, average magnitude is shifted from 0 because center of mass rapidity is not 0 (shift to Au-going side (η < 0))
- Trends are similar to those from Au+Au collisions

STAR HBT radii w.r.t. Ψ₁

✓ η dependence in Au+Au 200 GeV

- Average Rol value has η dependence (similar effect is seen in Cu+Au results).
- The 1st-order oscillation amplitude does not have significant dependence on η
 -> 1st-order oscillations have same sign in all eta region.

\checkmark Difference between participant and spectator Ψ_1 planes in Cu+Au 200 GeV

The 1st-order oscillation sign is opposite
 -> The same relation to v₁ measurement could be seen.

E.P. resolution correction is not applied

12

- BBC: v_1 sign is negative (3.3 < η < 5)
- ZDC: v₁ sign is positive (η > 6.3)

- Azimuthally integrated HBT radii
 ✓ HBT radii seems to be proportional to N_{part}^{1/3.}
- Azimuthal angle dependence of HBT radii w.r.t. Ψ₁

✓ Source tilt signal has been measured at 200 GeV.

- ✓ Average R_{ol} value can be shifted in case of non-zero center-of-mass rapidity
- ✓ The 1st-order oscillation shows opposite sign between event planes defined by participants and spectators

Outlook

- Perform event plane resolution correction and evaluate tilt angle
- Comparison between Au+Au and Cu+Au collisions quantitatively in azimuthal-angledependent HBT analysis
- Examine beam energy dependence in BES-II with high statistics and good event plane resolution due to installation of Event Plane Detector (EPD)

Au+Au 200 GeV using Data set

- Run11 minimum bias
- Events ~ 200 M Event selection
- |v_z| < 25 cm
- |v_r| < 2 cm
- |v_z v_z^{vpd}| < 3 cm
 Track selection
- 0.15 < p_T < 0.8 GeV/c
- |η| < 1.0
- nHitsFit >= 15
- nHitsFit/nHitsPoss >= 0.52
- DCA < 3 cm

Cu+Au 200 GeV using Data set

- Run12 minimum bias
- Events: ~ 45 M

Event Selection

- |v_z| < 30 cm
- |v_r| < 2 cm
- |v_z v_z^{vpd}| < 3 cm
 Track selection
- 0.15 < Pt < 2 GeV/c (for N_{part} dependence)
- 0.15 < Pt < 0.8 GeV/c (for Ψ_1 dependence)
- |η| < 1
- nHitsFit >= 15
- nHitsdEdx >= 10
- nHitsFit/nHitsPoss >= 0.52
- DCA < 3 cm

✓ Cu+Au has asymmetric density gradient and it arise "dipole flow".

-> It dump up directed flow signals. (Fig. (b))

✓ In addition, Cu+Au collisions have a different number of participant between forward and backward directions.

-> It shifts directed flow to the center of mass rapidity (Fig.(c))

STAR Event plane resolution correction 17

$$\begin{split} N(q,\Phi_{j}) = N_{\exp}(q,\Phi_{j}) + 2\sum_{n=1}^{n_{\text{bin}}} \zeta_{n,m}(\Delta) [N_{c,n}^{\exp}(q)\cos(n\Phi_{j}) \\ + N_{s,n}^{\exp}(q)\sin(n\Phi_{j})], \quad (44) \\ \zeta_{n,m}(\Delta) = \frac{n\Delta/2}{\sin(n\Delta/2) \langle \cos(n(\psi_{m} - \psi_{R})) \rangle_{p}} - 1. \quad (45) \\ \leftarrow \text{Res}\{\Psi_{m}\} \end{split}$$
 • The correction is performed to q distribution (N denotes the count of each qbin)
$$N_{s,n}^{\exp}(q) \equiv \langle N_{\exp}(q,\Phi)\sin(n\Phi) \rangle \qquad N_{c,n}^{\exp}(q) \equiv \langle N_{\exp}(q,\Phi)\cos(n\Phi) \rangle \\ = \frac{1}{n_{\text{bin}}} \sum_{j=1}^{n_{\text{bin}}} N_{\exp}(q,\Phi_{j})\sin(n\Phi_{j}), \qquad = \frac{1}{n_{\text{bin}}} \sum_{j=1}^{n_{\text{bin}}} N_{\exp}(q,\Phi_{j})\cos(n\Phi_{j}), \end{split}$$

• Correlation of event planes with different orders (e.g. 1st - 2nd) should be taken into account.