Azimuthal angle dependence of pion femtoscopy in ${ }^{S_{N N}}=200 \mathrm{GeVCu}+A u$ collisions at STAR

Yota Kawamura
for the STAR collaboration
October 27th， 2018
JPS／APS meeting＠Hawaii

stai HBT interferometry

- HBT can scope the source size at kinetic freeze-out
\checkmark Measure quantum interference between two identical particles

STAR Collaboration, Phys. Rev. Lett. 87 (2001) 82301

- Experimentally

$$
C(q)=\frac{N(q)}{D(q)} \quad \text { • Event mixing }
$$

N : pair distribution in same event (real)
D: pair distribution in different event (mix)

- Make correlation function as a function of
- Theory

$$
\begin{aligned}
C_{2} & =\frac{P\left(p_{1}, p_{2}\right)}{P\left(p_{1}\right) P\left(p_{2}\right)} \approx 1+\exp \left(-R^{2} Q_{i n v}^{2}\right) \\
\vec{q} & =\overrightarrow{p_{2}}-\overrightarrow{p_{1}} \quad Q_{i n v}=\sqrt{q_{x}^{2}+q_{y}^{2}+q_{z}^{2}-q_{0}^{2}}
\end{aligned}
$$ relative momentum (q)

- We can extract the source radius by fitting with theoretical formula.

stai 3D HBT radii

- Bertsch-Pratt Parameterization (Phys. Rev. D 33,72 , Phys. Rev. C 37, 1896 (1988))

$$
\begin{aligned}
& \vec{k}_{T}=\frac{1}{2}\left(\vec{p}_{T 1}+\vec{p}_{T 2}\right) \\
& \vec{q}_{\text {out }} \| \vec{k}_{T} \\
& \vec{q}_{\text {side }} \perp \vec{k}_{T}
\end{aligned}
$$

- 3 dimensional radii use
$\checkmark R_{\text {long }}$: Source size parallel to the beam direction
\checkmark Rout : Source size parallel to the pair transverse momentum ($\mathbf{k}_{\mathbf{T}}$)
$\checkmark R_{\text {side }}$: Source size perpendicular to $R_{\text {out }}$ and $R_{\text {iong }}$
\checkmark Fitting function:

$$
\begin{aligned}
& C(\vec{q})=N[(1-\lambda)+\lambda K(\vec{q})(1+G(\vec{q}))] \\
& G(\vec{q})=\exp \left(-R_{\text {out }}^{2} q_{o u t}^{2}-R_{\text {side }}^{2} q_{\text {side }}^{2}-R_{\text {long }}^{2} q_{\text {long }}^{2}\right)
\end{aligned}
$$

N : Normalization , $\mathrm{K}(\mathrm{q})$: Coulomb correction, λ : Correlation strength \checkmark Correlation function is expanded to 3 dimensional (out , side and long axis) \checkmark Extract radii parameters 3 dimensionally

STAR DMPQCTEO TMOM

ALICE Collaboration, Phys. Rev. Lett. 111 (2013) 232302

\checkmark Directed flow is generated by the interaction between spectator and participant particles.
\checkmark Quantified by the 1st harmonic in the Fourier expansion as \mathbf{v}_{1}

$$
v_{1}=\left\langle\cos \left(\phi-\Psi_{1}\right)\right\rangle
$$

$\checkmark v_{1}(\eta)$ is crossing 0 by 3 times at around midrapidity, forward and backward rapidity \checkmark The direction of flow have different sign between participant and spectator

stai HBT radii w.r.t. Ψ_{1}

M A Lisa et al. New J. Phys. 13 (2011) 065006

- One can predict one of the origin of directed flow is the "tilt of the medium"
- HBT measurement w.r.t. Ψ_{1} can scope directly this "tilt" by including cross terms in fit function.
\checkmark Fit function with cross term:

$$
\begin{aligned}
& C(\vec{q})=N[(1-\lambda)+\lambda K(\vec{q})(1+G(\vec{q}))] \\
& G(\vec{q})=\exp \left(-R_{\text {out }}^{2} q_{\text {out }}^{2}-R_{\text {side }}^{2} q_{\text {side }}^{2}-R_{\text {long }}^{2} q_{\text {long }}^{2}-2 R_{\text {os }}^{2} q_{o u t} q_{\text {side }}-2 R_{\text {ol }}^{2} q_{\text {out }} q_{\text {long }}-2 R_{\text {sl }}^{2} q_{\text {side }} q_{\text {long }}\right)
\end{aligned}
$$

- Important parameters: $\mathrm{R}_{\mathrm{ol}}, \mathrm{R}_{\mathrm{sl}}$
- If final source is tilted, R_{o} and R_{sl} cross terms will have oscillation w.r.t. $\boldsymbol{\Psi}_{1}$

sTAR Motivation

\checkmark Low energy

\checkmark High energy expectation

Is there a signal?
M A Lisa et al. New J. Phys. 13 (2011) 065006
Tilt angle

$$
\theta_{s}=\frac{1}{2} \tan ^{-1}\left(\frac{-4 R_{s l, 1}^{2}}{R_{l, 0}^{2}-R_{s, 0}^{2}+2 R_{s, 2}^{2}}\right)
$$

- Fit function:

$$
\begin{aligned}
& \mathbf{R}^{2}{ }_{\mu, 0}+2 \mathbf{R}^{2}{ }_{\mu, 1} \cos \left(\varphi-\Psi_{1}\right)+2 \mathbf{R}^{2}{ }_{\mu, 2} \cos \left(2\left(\varphi-\Psi_{1}\right)\right),(\mu=0, s, o l) \\
& \mathbf{R}_{\mu, 0}+2 \mathbf{R}_{\mu, 1}^{2} \sin \left(\varphi-\Psi_{1}\right)+2 \mathbf{R}_{\mu, 2} \sin \left(2\left(\varphi-\Psi_{1}\right)\right),(\mu=o s, s l)
\end{aligned}
$$

- Experimentally, source tilt has been only measured at low energies.
- Tilt angle is inversely proportional to the beam energy
- In RHIC energy (200 GeV), source tilt value is expected nearly 0 or signal is very small. \checkmark Measure HBT w.r.t Ψ_{1} and scope tilt signal using both $A u+A u$ and $C u+A u$ in 200 GeV $\checkmark \mathrm{Cu}+\mathrm{Au}$ have initial density asymmetry...
-> How does it affect HBT measurement?

star The STAR detector

Time Projection Chamber (TPC)

- Main tracking detector, $|\boldsymbol{\eta}|<1.0$, full azimuth

Zero Degree Calorimeter (ZDC)

- $|n|>6.3$
- Measure spectator neutron
- event plane reconstruction using spectator neutrons

TOF \& TPC detector \checkmark Use PID (particle identification) TPC ($\mathrm{dE} / \mathrm{dx}$) STAR Preliminary

TOF (time of flight)
STAR Preliminary

\checkmark Pion selected Beam-Beam Counters (BBC)

- $3.3<|\eta|<5$
- event plane reconstruction using participants

sTAR Analysis

- Cu+Au 200 GeV, Au+Au 200 GeV
- Number of events: $\mathrm{Cu}+\mathrm{Au}$ ~ 45 M
$A u+A u \sim 200$ M
- Correlation function

$$
N(q) \quad N: \text { Nair distribution (real) } \quad \begin{array}{llll}
& -0.1 & 0 & q_{\text {out }}(\mathrm{GeV} / \mathrm{c})
\end{array}
$$

- Estimate coulomb interaction correction factor

K(q) : coulomb correction

- Fit correlation function and extract radii parameters

$$
C(\vec{q})=N[(1-\lambda)+\lambda K(q)(1+G(\vec{q}))]
$$

\checkmark Azimuthally-integrated analysis $G(\vec{q})=\exp \left(-R_{\text {out }}^{2} q_{\text {out }}^{2}-R_{\text {side }}^{2} q_{\text {side }}^{2}-R_{\text {long }}^{2} q_{\text {long }}^{2}\right)$
\checkmark Azimuthal-angle-dependent HBT analysis
$G(\vec{q})=\exp \left(-R_{\text {out }}^{2} q_{\text {out }}^{2}-R_{\text {side }}^{2} q_{\text {side }}^{2}-R_{\text {long }}^{2} q_{\text {long }}^{2}-2 R_{\text {os }}^{2} q_{o u t} q_{\text {side }}-2 R_{\text {ol }}^{2} q_{o u t} q_{l o n g}-2 R_{\text {sl }}^{2} q_{\text {side }} q_{l o n g}\right)$

- Event plane reconstruction \checkmark ZDC east + west plane used \checkmark ZDC east + west plane is defined based of the sign of ZDC west ($\eta>0$) (with flipped sign of ZDC east ($\eta<0$))

star $N_{\text {part }}$ dependence

$\checkmark \mathrm{Cu}+\mathrm{Au} 200 \mathrm{GeV}$

\checkmark Comparison of System size

$0.15<k_{\mathrm{T}}<0.25 \mathrm{GeV} / c$

- $\mathrm{Cu}+\mathrm{Au} \sqrt{\mathrm{s}_{N N}}=200 \mathrm{GeV}$
$\star \mathrm{Au}+\mathrm{Au} \sqrt{\mathrm{s}_{N N}}=200 \mathrm{GeV}$
(STAR) Phys. Rev. C 80 (2009) 24905
- $\mathrm{Cu}+\mathrm{Cu} \sqrt{\mathrm{s}_{N N}}=200 \mathrm{GeV}$
(STAR) Phys. Rev. C 80 (2009) 24905
- $\mathrm{N}_{\text {part }}{ }^{1 / 3}$ corresponds to the source radius at the collision time.
- Checked HBT radii $\propto \mathbf{N}_{\text {part }}{ }^{1 / 3}$
- HBT radii have an approximate common linear dependence on $\mathbf{N a r t}^{1 / 3}$ regardless of system size differences.

star HBT radii w.r.t. Ψ_{1} in $A u+A u$

$\mathrm{Au}+\mathrm{Au} \sqrt{\mathrm{s}_{\mathrm{NN}}}=200 \mathrm{GeV}$ $|\eta|<1$
Centrality 10-50\% $0.15<k_{\mathrm{T}}<0.6 \mathrm{GeV} / \mathrm{c}$ $\pi^{+} \pi^{+}$and $\pi^{-\pi} \pi^{-}$combined

- E.P. resolution correction is not applied
- $\mathbf{R}_{\text {out }}, \mathbf{R}_{\text {side }}$ and $\mathbf{R}_{\text {os }}$ have a $2 n d$-order oscillation due to the elliptic source shape with respect to Ψ_{1}
- Small (but $\neq 0$) 1st-order oscillation can be found in $R_{\text {ol }}$ and $R_{\text {sl }}$ due to source tilt signal.
- These results indicate that the source shape at freeze-out is tilted even at top RHIC energy.

star HBT radii w.r.t. Ψ_{1} in $C u+A u$

$\mathrm{Cu}+\mathrm{Au} \sqrt{\mathrm{s}_{N N}}=200 \mathrm{GeV}$ $|\eta|<1$
Centrality 10-50 \% $0.15<k_{\mathrm{T}}<0.6 \mathrm{GeV} / \mathrm{c}$ $\pi^{+} \pi^{+}$and $\pi^{-} \pi^{-}$combined

- E.P. resolution correction is not applied

者都

- For all extra radii, oscillation is small as compared to Au+Au results due to poor event plane resolution
- In R_{ol}, average magnitude is shifted from $\mathbf{0}$ because center of mass rapidity is not $\mathbf{0}$ (shift to Au-going side ($\boldsymbol{\eta}<0$))
- Trends are similar to those from Au+Au collisions

star HBT radii w.r.t. Ψ_{1}

$\checkmark \eta$ dependence in $\mathrm{Au}+\mathrm{Au} 200 \mathrm{GeV}$

$\mathrm{Au}+\mathrm{Au} \sqrt{\mathrm{s}_{N N}}=200 \mathrm{GeV}$ Centrality 10-50 \%
$0.15<k_{\mathrm{T}}<0.6 \mathrm{GeV} / c$
$\pi^{+} \pi^{+}$and $\pi^{-} \pi^{-}$combined

- E.P. resolution correction is not applied
- Average R_{ol} value has $\boldsymbol{\eta}$ dependence (similar effect is seen in $\mathrm{Cu}+\mathrm{Au}$ results).
- The 1st-order oscillation amplitude does not have significant dependence on η -> 1st-order oscillations have same sign in all eta region.
\checkmark Difference between participant and spectator Ψ_{1} planes in Cu+Au 200 GeV

- The 1st-order oscillation sign is opposite
-> The same relation to v_{1} measurement could be seen.
$\mathrm{Cu}+\mathrm{Au} \sqrt{\mathrm{s}_{N N}}=200 \mathrm{GeV}$
Centrality 10-50\%
$0.2<k_{\mathrm{T}}<1.0 \mathrm{GeV} / \mathrm{c}$
$\pi^{+} \pi^{+}$and $\pi^{-} \pi^{-}$combined
- ZDC east+west
- BBC east+west
- E.P. resolution correction is not applied
- BBC: v_{1} sign is negative ($3.3<\eta<5$)
- ZDC: v_{1} sign is positive $(\eta>6.3)$

star Summary

- Azimuthally integrated HBT radii
\checkmark HBT radii seems to be proportional to $\mathbf{N}_{\text {part }}{ }^{1 / 3}$.
- Azimuthal angle dependence of HBT radii w.r.t. Ψ_{1}
\checkmark Source tilt signal has been measured at 200 GeV .
\checkmark Average Rol value can be shifted in case of non-zero center-of-mass rapidity \checkmark The 1st-order oscillation shows opposite sign between event planes defined by participants and spectators

Outlook

- Perform event plane resolution correction and evaluate tilt angle
- Comparison between Au+Au and Cu+Au collisions quantitatively in azimuthal-angledependent HBT analysis
- Examine beam energy dependence in BES-II with high statistics and good event plane resolution due to installation of Event Plane Detector (EPD)

Back up

star Data set

Au+Au 200 GeV using Data set

- Run11 minimum bias
- Events ~ 200 M

Event selection

- $\left|\mathrm{v}_{\mathrm{z}}\right|<25 \mathrm{~cm}$
- $\left|v_{r}\right|<2 \mathbf{c m}$
- $\left|\mathbf{v}_{\mathbf{z}}-\mathbf{v z}_{\mathbf{z}}^{\mathrm{vpd}}\right|<3 \mathrm{~cm}$

Track selection

- $0.15<\mathrm{p}_{\mathrm{T}}<0.8 \mathrm{GeV} / \mathrm{c}$
- $|\eta|<1.0$
- nHitsFit >= 15
- nHitsFit/nHitsPoss >= 0.52
- DCA < 3 cm

Cu+Au 200 GeV using Data set

- Run12 minimum bias
- Events: ~ 45 M

Event Selection

- $\left|\mathrm{v}_{\mathbf{z}}\right|<30 \mathrm{~cm}$
- $\left|v_{r}\right|<2$ cm
- $\left|\mathbf{v}_{\mathbf{z}}-\mathbf{v}_{\mathbf{z}}^{\mathrm{vpd}}\right|<3 \mathrm{~cm}$ Track selection
- $0.15<\mathrm{Pt}<2 \mathrm{GeV} / \mathrm{c}$ (for $\mathrm{N}_{\text {part }}$ dependence)
- $0.15<\mathrm{Pt}<0.8 \mathrm{GeV} / \mathrm{c}$ (for Ψ_{1} dependence)
- $|\boldsymbol{n}|<1$
- nHitsFit >= 15
- nHitsdEdx >= 10
- nHitsFit/nHitsPoss >= 0.52
- DCA $<\mathbf{3 c m}$

star $C u+A u$ collisions

STAR Collaboration, Phys. Rev. C 98 (2018) 14915

```
    Directed flow
```

O

Participant
Phys. Rev. C 98, 014915

(b) tilted source

+ asymmetric density gradient

(c) tilted source
+ asymmetric participants

$\checkmark \mathrm{Cu}+\mathrm{Au}$ has asymmetric density gradient and it arise "dipole flow".
-> It dump up directed flow signals. (Fig. (b))
\checkmark In addition, $\mathrm{Cu}+\mathrm{Au}$ collisions have a different number of participant between forward and backward directions.
-> It shifts directed flow to the center of mass rapidity (Fig.(c))

stais Event plane resolution correction

$$
\begin{align*}
& N\left(\boldsymbol{q}, \Phi_{j}\right)=N_{\exp }\left(\boldsymbol{q}, \Phi_{j}\right)+2 \sum_{n=1}^{n_{\text {bin }}} \zeta_{n, m}(\Delta)\left[N_{c, n}^{\exp }(\boldsymbol{q}) \cos \left(n \Phi_{j}\right)\right. \\
& \left.+N_{s, n}^{\exp }(\boldsymbol{q}) \sin \left(n \Phi_{j}\right)\right], \tag{44}\\
& \zeta_{n, m}(\Delta)=\frac{n \Delta / 2}{\sin (n \Delta / 2)\left\langle\cos \left(n\left(\psi_{m}-\psi_{R}\right)\right)\right\rangle_{p}}-1 . \quad(45) \underset{\operatorname{Res}\left\{\Psi_{\mathrm{m}}\right\}}{ } \mathrm{e} \\
& N_{s, n}^{\exp }(\boldsymbol{q}) \equiv\left\langle N_{\exp }(\boldsymbol{q}, \Phi) \sin (n \Phi)\right\rangle \\
& =\frac{1}{n_{\text {bin }}} \sum_{j=1}^{n_{\text {bin }}} N_{\text {exp }}\left(\boldsymbol{q}, \Phi_{j}\right) \sin \left(n \Phi_{j}\right), \quad=\frac{1}{n_{\text {bin }}} \sum_{j=1}^{n_{\text {bin }}} N_{\exp }\left(\boldsymbol{q}, \Phi_{j}\right) \cos \left(n \Phi_{j}\right), \\
& \text { - The correction is performed to } \\
& q \text { distribution } \\
& \text { (} \mathrm{N} \text { denotes the count of each qbin) } \\
& N_{c, n}^{\exp }(\boldsymbol{q}) \equiv\left\langle N_{\exp }(\boldsymbol{q}, \Phi) \cos (n \Phi)\right\rangle
\end{align*}
$$

- Correlation of event planes with different orders (e.g. 1st - 2nd) should be taken into account.

