New centrality determination for Beam Energy Scan II at STAR and its effect on measurements of fluctuations

Yuri Sato (for the STAR collaboration) 2020. 9. 17 JPS 2020 autumn meeting @online

search for the QCD critical point

- ✓ Lattice QCD calculation has predicted that phase transition around $\mu_{\rm B}$ =0 is "**smooth crossover**".
- ✓ We search for the 1st-order phase transition and the critical point.
- ✓ Fluctuations of conserved quantities are considered to be a powerful tool to search for the critical point.

Beam Energy Scan@STAR (~2014, 7.7-200 GeV)

Non-monotonic behavior of net-p $\kappa\sigma^2$ at low energy appeared, which could be a signature of the critical point.

Y.Aoki et al., Nature, 443, 675 (2006) STAR Collaboration, arXiv:2001.02852 (2020)

autocorrelation & centrality resolution effect

✓ Current centrality determination is based on multiplicity at mid-rapidity, excluding particles of interest.

Refmult3 : multiplicity in $|\eta| < 1.0$ excluding protons Current centrality may be biased by autocorrelation.

- Autocorrelation makes fluctuation smaller.
- **Worse centrality resolution** makes fluctuation larger. \checkmark

motivation

Event Plane Detector (EPD)

- ✓ A new scintillation detector installed in 2.1 < | η | < 5.1
- ✓ Consist of 16 rings x 24 segments in phi in East and West side each
- ✓ Expecting to be a new centrality detector with less autocorrelation effect

<u>Goal:</u>

Understand autocorrelation effect and subtract it from measured fluctuations

This presentation:

✓ New centrality determination using EPD in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV.

EPD performance

- ✓ NMip : gain calibrated energy loss in tile, in units of Landau MPV for one MIP.
- NMip integrated in several rings (NMipSum) is used for centrality determination.
- ✓ In lower energy collisions, also spectators are measured in the EPD inner rings.

Correlation between EPD NMipSum and multiplicity in mid-rapidity:

- Positive correlation in outer rings
 Anticorrelation in inner rings
- Summing up all rings will make the centrality resolution worse.

STAR 🖈

multiplicity(| η |<0.5)

Glauber model

hAuA

-2.346

2.907

3.24

-0.2497

10⁴

10³

10²

10

Entries Mean x

Mean y

Std Dev x

Std Dev y

✓ Based on Wood-saxon model and $\sigma_{\rm pp}$ = 33 mb

Two component model is introduced.

$$N_{source} = (1 - x)\frac{N_{part}}{2} + xN_{coll}$$

- $x = 0.12 \sim 0.13$ is usually used in STAR.
- Negative binomial distribution (NBD) is employed to implement the source by source multiplicity fluctuations.
- ✓ To simulate EPD-NMipSum, Landau fluctuation is added to each particle.

$$NMip = \sum_{i=1}^{nHit} dE$$

- **dE**: energy loss per particle according to the Landau distribution
- nHit: number of hit to the tile

۲ (fm)

- Centrality can be determined for each bin to have equal number of events based on multiplicity.
- ✓ Trigger efficiency was measured to be 80-90 % in previous analysis.

Refmult3corr : multiplicity in $|\eta| < 1.0$ excluding protons (corrected for luminosity and V_z dependence)

✓ Impact parameter resolution of Epd ring:7-16 and Tpc Refmult3 is almost the same.

✓ Resolution of Epd ring:13-16 is worse than the others because of fewer particles.

STAR 🛧

JPS 2020 autumn meeting @ online

multiplicity distributions

- \checkmark The shape of multiplicity distributions are different especially in low multiplicity.
- Trigger efficiency seems to be different between EPD and TPC, but it should be equal for the same dataset.
- d7-16(MC Epd7-16(data \checkmark The difference can be caused by spectators. Tpc Refmult3 Epd ring:1-16 MC 2 Epd ring:7-16 ъ Epd ring:13-16 * 10⁴ data 104 Refmult3(MC) Refmult3corr(data) <Epd7-16> **30~ % dropped??** 10[°] 10² 10² 400 10 10 300 200 - MC 900 100 200 300 400 500 600 700 800 1000 500 600 100 200data multiplicity 100 Epd7-16

100

200

700

Refmult3

Summary

- ✓ To understand fluctuation results, centrality resolution of the EPD should be investigated.
- ✓ Without considering the effect of spectators, the impact parameter resolutions of EPD 7-16 and TPC Refmult3 are almost the same.
- ✓ Impact parameter resolution becomes worse when only outer a few rings are used for centrality determination.
- ✓ Conventional Glauber+NBD assuming two-component model does not fit the measured EPD NMipSum, especially at low multiplicity.

Outlook

□Implement spectators in Glauber fit

■Net-proton fluctuation measurements with EPD centrality

Back up

EPD centrality resolution

- ✓ Impact parameter cannot be measured experimentally.
- \Rightarrow Centrality resolution can be compared seeing relative width of TPC mult. distributions.

16	0.263862	0.201751	0.195763	0.191706	0.19049	0.200157	
15	0.217208	0.177453	0.174052	0.173256	0.171189	0.173851	
14	0.19571	0.167138	0.16294	0.162715	0.161183	0.166561	
13	0.185672	0.161467	0.158139	0.157002	0.15584	0.158934	
12	0.180692	0.158966	0.156894	0.155198	0.154714	0.156087	
11	0.177263	0.157587	0.155054	0.154254	0.153718	0.155338	
10	0.175539	0.155939	0.153869	0.153049	0.152761	0.153328	
9	0.173857	0.155216	0.152963	0.151416	0.151304	0.153158	
8	0.17278	0.154732	0.152461	0.151204	0.150822	0.150828	
7	0.172468	0.154354	0.152055	0.151042	0.150407	0.150603	
6	0.172849	0.154982	0.15221	0.151478	0.150853	0.152027	
5	0.173426	0.155733	0.153259	0.15227	0.150851	0.151567	
4	0.175012	0.15753	0.154805	0.153504	0.152075	0.153084	
3	0.177291	0.159593	0.156597	0.155081	0.15449	0.155525	
2	0.181049	0.162758	0.159516	0.157891	0.156934	0.158097	
1	0.187443	0.166838	0.163032	0.161164	0.159841	0.160308	
	NMipMé	NMipMa ax:none	NMipMa	NMipMa	NMipMa	NMipMax	(;7

ma/m

impact parameter and $N_{\text{part}}\,distribution$

2020.9.17

Model including spectators

