Differential measurement of global polarization of Λ hyperons at RHIC-STAR experiment

Kosuke Okubo (for the STAR Collaboration) University of Tsukuba

In non-central heavy-ion collisions, large orbital angular momentum can be manifested in the form of vorticity in the medium. Due to the spin-orbit coupling, the spin directions of particles are aligned with the orbital angular momentum of the system. Global spin polarization of Λ and $\overline{\Lambda}$ hyperons has been measured in Au+Au collisions from $\sqrt{s_{NN}} = 3.0$ GeV to 5.02 TeV and it is found that global polarization increases at lower collision energies [1–4]. The slope of the directed flow at midrapidity is likely to have strong correlation with the vorticity, and there is a similar trend on the energy dependence between global polarization and the slope of the directed flow [5]. In this talk, we will report differential measurements (transverse momentum, centrality, and first order flow vector (q_1) dependence) of global spin polarization of Λ hyperons in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV.

References

- [1]~ L.Adamczyk et al, (STAR) Nature 548, 62 (2017).
- [2] J.Adam et al.(STAR), Phys. Rev. C 98, 14910 (2018).
- [3]~ S.Acharya et al. (ALICE), Phys. Rev. C 101, 044611 (2020).
- $[4]\,$ M.S. Abdallah et al. (STAR), Phys. Rev. C 104 6, L061901 (2021).
- [5] S. A. Voloshin, EPJ Web Conf. 171, 07002 (2018).