

Recent hard probes measurements from STAR experiment

Jaroslav Bielcik for the STAR collaboration Czech Technical University in Prague

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

XII International Conference on New Frontiers in Physics, 10-22.7. 2023, Kolymbari, Crete

Outline

- Open heavy flavor measurements
- Quarkonium measurements
- Jet measurements

FAR

STAR experiment

Forward upgrade: $2.5 < \eta < 4$

Heavy flavor tracker: 2014-2016

- Charm quark: $m_c >> T_{QGP}$, Λ_{QCD} ۲
- Produced in hard scatterings at the early stage of nuclear ٠ collisions \rightarrow experience the entire evolution of medium
- We aim to understand charm quark energy loss in the ٠ medium, charm quark transport and hadronization

STAR: PRD 86 (2012) 072013, NPA 931 (2014) 520 CDF: PRL 91 (2003) 241804; ALICE: JHEP01 (2012) 128 FONLL: PRL 95 (2005) 122001

Its production rates are well described by pQCD in elementary collisions

STAR

Open charm hadron reconstruction

- Data from Au+Au collisions at Vs_{NN} = 200 GeV collected with Heavy flavor tracker in years 2014 and 2016
- HFT allows direct topological reconstruction of open-charm hadrons via their hadronic decays
- Significant suppression of combinatorial background
- Decay channels used:
 - $D^+ \rightarrow K^-\pi^+\pi^+$, $c\tau = (311.8 \pm 2.1) \ \mu m$
 - BR = (8.98 ± 0.28) %
 - $D^0 \rightarrow K^-\pi^+$, $c\tau = (122.9 \pm 0.4) \ \mu m$

BR = (3.93 ± 0.04) %

■ $D_s \rightarrow \pi^+ \phi, \phi \rightarrow K^- K^+, c\tau = (149.9 \pm 2.1) \mu m$ BR = (2.27 ± 0.08) %

•
$$\Lambda_c \rightarrow K^- \pi^+ p, c\tau = (59.9 \pm 1.8) \ \mu m$$

BR = (6.35 ± 0.33) %

STAR Nuclear modification factor R_{AA} of D^0 and D^{\pm}

$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$$

 $\begin{array}{l} D^0 \mbox{ (STAR): Phys. Rev. C 99, 034908, (2019).} \\ \pi^{\pm} \mbox{ (STAR): Phys. Lett. B 655, 104 (2007).} \\ D \mbox{ (ALICE): JHEP 03, 081 (2016).} \\ h^{\pm} \mbox{ (ALICE): Phys. Lett. B 720, 52 (2013).} \\ LBT: Phys. Rev. C 94, 014909, (2016). \\ Duke: Phys. Rev. C 97, 014907, (2018). \end{array}$

Strong interaction between charm quarks and medium

- Suppression of D⁰ and D[±] mesons at high p_T comparable to light-flavor hadrons at RHIC and D mesons at LHC
- Models incorporating both radiative and collisional energy loss explain the data
- $D^{+/-}/D^0$ yield ratio in Au+Au is consistent with PYTHIA8.

D_s/D^0 yield ratio enhancement

STAR

STAR, Phys. Rev. Lett. 127 (2021) 092301

- Observed strong enhancement of the D_s/D^0 yield ratio compared to PYTHIA 6.4 p+p baseline
- The enhancement can be qualitatively described by model calculations incorporating thermal abundance of strange quarks in the QGP and coalescence hadronization
- None of the models can decribe the data in measured p_T range
- **Recombination** of charm quarks with strange quarks in the QGP plays an important role

Λ_c/D^0 yield ratio

STAR

STAR, Phys. Rev. Lett. 124 (2020) 172301

- Λ_c/D^0 ratio is comparable to baryon-to-meson ratios of light-flavor hadrons
- Clear enhancement observed compared to PYTHIA 8.24
- Most of the models incorporating charm quark hadronization via coalescence are consistent with data
- Enhancement of ratio increases in central collision ۰ Importance of coalescence of charm quarks

STAR

Charm production cross section

Collision System	Hadron	dσ _{ոո} /dy [μb]
Au+Au at 200 GeV Centrality: 10-40% 0 < p _T < 8 GeV/c	D^{0} [1]	$39 \pm 1 \pm 1$
	D^{\pm}	$18 \pm 1 \pm 3^{*}$
	D _s [2]	$15 \pm 2 \pm 4$
	Λ _c [3]	$40 \pm 6 \pm 27^{**}$
	Total	$112 \pm 6 \pm 27$
p+p at 200 GeV [4]	Total	$130 \pm 30 \pm 26$
* Preliminary D ^{+/-} results ** Λ_c cross-section using Λ_c/D^0 yield ratio		

[1] D⁰ (STAR): Phys. Rev. C 99, 034908, (2019) [2] D_s (STAR): Phys. Rev. Lett. 127 (2021) 092301 [3] Λ_c (STAR): Phys. Rev. Lett. 124 (2020) 172301 [4] p+p (STAR): Phys. Rev. D 86 072013, (2012)

- Total charm production cross-section per binary collision in Au+Au
 - Au+Au result is consistent with that measured in p+p collisions within uncertainties

STAR

Electrons from HF hadron decays

- Precise high- p_{τ} measurement $3.5 < p_{T} < 9 \text{ GeV/c}$
- A suppression by about a factor of 2 is observed in central and semi-central collisions
- No p_{τ} dependence observed
- A hint of R_{AA} decreasing from peripheral to central collisions
- Models describe the data well ٠
- Indication of substantial energy loss • of heavy quarks in the QGP

Heavy-flavor hadron decayed electrons: $c \rightarrow e$ and $b \rightarrow e$ **separation** in 200 GeV Au+Au collisions thanks to HFT

- Observation of less suppression for $B \rightarrow e$ than $D \rightarrow e$
- Consistent with expected mass hierarchy for parton energy loss $\Delta E_c > \Delta E_b$ 11

STAR Energy dependence of HFE elliptic flow $v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$

- v_2 vs coll. energy \rightarrow temperature dependence of charm quark diffusion coefficient
- At 27 GeV v₂ of c,b \rightarrow e consistent with zero
- Significant non-zero v_2 of c,b \rightarrow e at 54.4 200 GeV
- At low p_T models underestimate data
- HF quarks interact strongly with the medium at 54.4 200 GeV
- A hint of mass hierarchy is observed where the v₂ of heavier particles drops faster than lighter ones with decreasing collision energy

Quarkonium states in A+A

Charmonia: J/ ψ , ψ ', χ_c

Hot nuclear matter:

QQbar potential and spectral function modified in the QCD medium w.r.t. vacuum

• **Dissociation** due to color screening and regeneration

 $\mathsf{T}_{\mathsf{diss}}(\psi') \approx \mathsf{T}_{\mathsf{diss}}(\chi_{\mathsf{c}}) < \mathsf{T}_{\mathsf{diss}}(\Upsilon(\mathsf{3S})) < \mathsf{T}_{\mathsf{diss}}(\mathsf{J}/\psi) \approx \mathsf{T}_{\mathsf{diss}}(\Upsilon(\mathsf{2S})) < \mathsf{T}_{\mathsf{diss}}(\Upsilon(\mathsf{1S}))$

Regeneration

Bottomonia: $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$

Dissociation

Sequential suppression of states is determined by T_c and their binding energy

Cold nuclear matter (p+Au):

 Modification of PDFs, nuclear absorption, coherent energy loss, co-mover absorption...

Production mechanism (p+p)

J/ψ production in heavy-ion collisions

 Low p_T < 2 GeV/c: Cold nuclear matter effect are not negligible

STAR

- High p_T: suppression in Au+Au due to QGP
- No significant collision system dependence of the J/ψ suppression at similar <N_{part}>
- Suppression driven by system energy density
- At high p_T: Strong suppression at RHIC and regeneration at LHC

J/ψ elliptic flow

Isobar: Ru+Ru&Zr+Zr@200 GeV

Au+Au: Phys. Rev. Lett. 111 (2013) 52301

- More precise v_2 measurement at $p_T < 4$ GeV/c than in previous Au+Au 200 GeV
- $v_2 = 0.003 \pm 0.017(stat.) \pm 0.010(sys.)$
- Indication of little regeneration and/or small charm quark flow

Y(nS) suppression in heavy-ion collisions

STAR

16

STAR Y(1S), Y(2S) suppression in isobaric collisions

- Similar level of suppression of Y(1S) and Y(2S) observed in isobar collision as in Au+Au 200 GeV
- Significant suppression, increasing with collision centrality
- Hint of sequential suppression of Y(nS) states: $R_{AA}[Y(1S) > Y(2S)]$

Jets

- Jets clusters of final- state particles resulting from QCD evolution of hard scattered partons
- Jets well established hard probe of QGP
- Modifications to the jet energy and structure in Au+Au relative to those in p + p or p+Au collisions -> due to the transport properties of the QGP

STAR: PRC 102, 054913 (2020)

- Inclusive charged jet suppression R_{CP} at RHIC and LHC comparable
- Recent jet measurements address jet modifications using jet substructure measurements like — jet mass, jet shape, etc.

STAR N

Nuclear modification factor of recoil jets

• Semi-inclusive γ +jet and π^0 +jet measurement

- Recoil jet yield is more suppressed for R=0.2 than R=0.5 indicating lost jet energy redistribution in the medium
- γ +jet and π^0 +jet show similar level of suppression, within uncertainty

Jet-medium interaction

• Semi-inclusive γ +jet and π^0 +jet measurement

$$\mathfrak{R}^{rac{\mathrm{small}-R}{\mathrm{large}-R}} = rac{\mathrm{Y}(p_{\mathrm{T}}^{\mathrm{jet,ch}})^{\mathrm{small}-\mathrm{R}}}{\mathrm{Y}(p_{\mathrm{T}}^{\mathrm{jet,ch}})^{\mathrm{large}-\mathrm{R}}}$$

- In-medium intra-jet broadening in Au+Au w.r.t. p+p collisions
- Separating vacuum shower and in-medium radiation

- $\Re^{0.2/0.5} < 1$ in p+p collisions due to jet radial profile in vacuum
- $\Re^{0.2/0.5}$ is smaller in Au+Au than in p+p indicating in-medium broadening of jet shower

STAR π^0 +jet azimuthal correlation in p+p collisions

R=0.2

R=0.5

 PYTHIA-8 (MONASH tune) describes the π⁰ +jet azimuthal correlation in p+p 200 GeV well

Jet acoplanarity in heavy-ion collisions

R=0.5

- Excess recoil jet yield around π/2 acoplanarity observed in Au+Au collisions (jets with R=0.5)
 - In-medium jet scattering?
 - Medium response?

STAR

Dijet asymmetry

STAR, Phys.Rev.C 105 (2022) 044906

 Disagreement between Au+Au and p+p⊕Au+Au at all angles — jets are modified in Au+Au

Dijet asymmetry

- No difference between Au+Au and $p+p \bigoplus Au+Au for matched to HardCore jets$
- Matches jets are balanced energy recovered
- No angular dependence

STAR

Consistent with recoil jet loses energy as single color charge radiating in medium

Outlook of 2023-2025

STAR BUR-2022:

$\sqrt{s_{ m NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	Au+Au	$20{ m B}~/~40~{ m nb^{-1}}$	2023 + 2025
200	$p{+}p$	$235~{ m pb}^{-1}$	2024
200	$p{+}\mathrm{Au}$	$1.3~{ m pb}^{-1}$	2024

- Broader momentum coverage at RHIC
- Complementarity between RHIC and LHC

https://indico.bnl.gov/event/15148/attachments/40846/68609/STAR_ BUR_Runs23_25___2022 (1).pdf

Summary

- STAR extensively studied production of open-charmed hadrons, quarkonia and jets
- D^0 , D^{\pm} meson R_{AA} and HFE v_2 in Au+Au collisions:
 - Indicate strong charm-medium interactions
- Λ_c/D⁰ and D_s/D⁰ yield ratios are enhanced in Au+Au collisions with respect to p+p collisions
 - <u>Coalescence plays an important role in charm quark hadronization</u>
- Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e$
 - <u>Consistent with expected mass hierarchy of parton energy loss</u>
- J/ψ suppression: no significant collision system and energy dependence
 - Interplay of dissociation and regeneration effects
- Sequential Y suppression at RHIC
- Jet suppression and accoplanarity:
 - Manifestation of jet-medium interactions
- Dijet asymmetry:
 - No angular dependence of jet energy loss for recoiled matched jets
 ²⁶

Many jet substructure measurements in p+p collision....