J/ψ production in Ultra-Peripheral Collisions at STAR

Jaroslav Adam For the STAR Collaboration

Creighton University, Omaha

Creighton

College of Arts and Sciences

Beaver Creek Resort

The 35th Winter Workshop on Nuclear Dynamics

Jaroslav Adam (Creighton University)

 J/ψ production in UPC at STAR

STAR

Ultra-peripheral heavy-ion collisions

- An ultra-peripheral collision (UPC) is a collision at impact parameter greater than the sum of the nuclear radii
- Electromagnetic field of protons and ions behaves like a beam of quasi-real photons
- Photon beam intensity is proportional to Z²
- Photoproduction in γp and γA interactions
- QED processes in $\gamma\gamma$ interactions

New STAR results on coherent J/ψ photoproduction in Au+Au UPC at 200 GeV

Physics processes studied in ultra-peripheral collisions

- Lorentz-contracted field in UPC is described as a flux of quasi-real photons
- We can study photon-nucleus (a) and photon-photon (b) interactions
- Vector mesons and e^+e^- pairs are the only produced particles
- Nuclei typically leave intact, but may be excited by electromagnetic field to emit neutrons
- The STAR data for the coherent J/ψ production were taken with the requirement for both nuclei to emit at least one neutron (XnXn)

Virtual photon flux by Weizsäcker-Williams concept

• Perpendicular Lorentz contraction, energy spectrum by Fourier transform:

$$I(\omega,b) = rac{1}{4\pi} |m{E}(\omega) imes m{B}(\omega)|$$

• With the field of uniformly moving charge, flux of photons per unit of area is

$$N(\omega, b) = \frac{Z_1^2 \alpha_{\rm em} \omega^2}{\pi^2 \gamma_L^2 v^2} \left[K_1^2(x) + \frac{1}{\gamma_L^2} K_0^2(x) \right]$$

 Modified Bessel function K²₁(x) of argument x = ωb/γ_Lv gives leading contribution of transversal photons in ultra-relativistic limit

Intensity of the photons is proportional to the squared charge, Z^2

Bertulani, Baur, Phys.Rept. 163 (1988) 299

Jaroslav Adam (Creighton University)

 J/ψ production in UPC at STAR

Photoproduction of heavy vector mesons

• Can be described by perturbative QCD as two-gluon exchange

 Photon coupling may be coherent or incoherent

• Cross section is proportional to the square of gluon distribution, $g_A(x, Q^2)$, at the scale of, $Q^2 = M_{J/\psi}^2/4$:

$$\frac{\mathrm{d}\sigma(\gamma A \to J/\psi A)}{\mathrm{d}t}\bigg|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha_{\mathrm{em}} M_{J/\psi}^5} 16\pi^3 \Big[xg_A(x,Q^2) \Big]^2$$

• Momentum fraction of probed gluons is $x = (M_{J/\psi}/W_{\gamma A})^2$

Coherent cross section is sensitive to nuclear effects to gluon density at low-x

Diffraction origin in hadronic collisions in analogy with optics

Optics

 Electromagnetic wave as solution to Helmholtz equation

 $(\nabla^2 + k^2)U = 0$

• Wave number $k = 2\pi/\lambda$

- Every point in a hole of radius, *R*, is a source of spherical wave
- Diffraction in light intensity at a distance, *D*, when kR²/D <

High energy physics

• Wave function as solution to Schröedinger equation

 $-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r})+V(\mathbf{r})\psi(\mathbf{r})=E\psi(\mathbf{r})$

 Scattering is described as an outgoing spherical wave

- Typically $R \sim 1$ fm, $D \gtrsim 1$ cm and $k \sim \sqrt{s} \sim 200$ GeV
- Optical condition is satisfied

Glauber approach to coherent J/ψ cross section

• Based on the experimental $\gamma p \rightarrow J/\psi p$ cross section and nuclear thickness function, $T_A(\vec{r})$, as an input to the Glauber formula:

$$\sigma_{\rm tot}(J/\psi A) = \int d^2 \vec{r} \left(1 - e^{-\sigma_{\rm tot}(J/\psi p)T_A(\vec{r})}\right)$$

- Implemented in STARLIGHT, Klein *et al.*, Comput.Phys.Commun. 212 (2017) 258-268
- Coherent photon-nucleus cross section is then found by the vector meson dominance and Woods-Saxon nuclear profile
- Cross section in nucleus-nucleus UPC is obtained by convoluting with photon flux, $N_{\gamma}(k)$:

$$\sigma(AA \to J/\psi A) = 2 \int \mathrm{d}k \frac{\mathrm{d}N_{\gamma}(k)}{\mathrm{d}k} \sigma(\gamma A \to J/\psi)$$

 Factor of two in front of the integral accounts for possibility of both nuclei to be a photon source or a target

Dipole model for coherent J/ψ photoproduction

- Allows one to non-linear QCD phenomena via the Color-Glass Condensate
- Used in the model by Mäntysaari, Schenke, Phys.Lett. B772 (2017) 832-838
- Photon fluctuates to quark-antiquark dipole with transverse separation, \vec{r}
- The dipole scatters off the nucleus
- Vector meson is formed out of the dipole

Drawing is from Phys.Rev. D74 (2006) 074016

Coherent photoproduction in hot spot model

- Also based on dipole approach to photon-nucleus scattering
- Individual nucleons consist of Gaussian hot spots
- Used in the model by Cepila, Contreras, Krelina, Phys.Rev. C97 (2018) no.2, 024901
- Number of hot spots increases with decreasing x
- Diffractive cross section in t is related to transverse distribution of target

The STAR experiment

• Central tracking and particle identification, forward counters and neutron detection

- Time Projection Chamber: tracking and identification in $|\eta| < 1$
- Time-Of-Flight: multiplicity trigger, identification and pile-up track removal
- Barrel ElectroMagnetic Calorimeter: topology trigger and pile-up track removal
- Beam-Beam Counters: scintillator counters in 2.1 < $|\eta|$ < 5.2, forward veto
- Zero Degree Calorimeters: detection of very forward neutrons, $|\eta| > 6.6$

Jaroslav Adam (Creighton University)

 J/ψ production in UPC at STAR

Trigger and data selection for coherent J/ψ production in UPC

Just two tracks from a low- p_T vector meson, forward neutrons, and nothing else

- Rapidity acceptance for J/ψ is |y| < 1
- Trigger requirements assume two tracks and neutrons in ZDCs
- Back-to-back hits in BEMC
- Limited activity in TOF
- Showers in both ZDCs
 - Energy deposition within 1/4 to 4 beam-energy neutrons
 - Full efficiency to a single neutron
- Veto from both BBCs

Detectors are not in scale in the illustration

Very forward neutron emission

- Excited nuclei emit neutrons in a forward direction
- Au* ZDC signal shows peak structures for one neutron, two or more neutrons
 - The neutrons are a convenient way to tag UPC events at the trigger level

Jaroslav Adam (Creighton University)

Invariant mass of selected candidates

- Signal of J/ψ and continuum from $\gamma\gamma \rightarrow e^+e^-$
- Minimal like-sign background
- Fit by Crystal Ball for J/ψ and empiric formula for $\gamma\gamma \rightarrow e^+e^-$
- Parametrization for $\gamma\gamma \rightarrow e^+e^-$ is:

 $f_{\gamma\gamma \to e^+e^-} = (m - c_1)e^{\lambda(m - c_1)^2 + c_2m^3}$

• The parametrization is effective convolution of $\gamma\gamma \rightarrow e^+e^-$ cross section and detector effects

Mass fit is used to account for $\gamma\gamma
ightarrow e^+e^-$ contribution in J/ψ signal

Transverse momentum of J/ψ candidates

- Dielectrons within J/ψ mass peak
- Individual components by MC templates:

Coherent J/ψ Incoherent J/ψ $\gamma\gamma \rightarrow e^+e^-$

- MC templates are provided by STARLIGHT
- Contribution of γγ → e⁺e[−] is normalized using fit to the invariant mass distribution
- Illustrative normalization for coherent and incoherent components

Coherent and incoherent J/ψ have different shapes of p_T spectrum

Fit to transverse momentum in $\log_{10}(p_T^2)$

- Separation of incoherent and coherent components
- Parametrization for incoherent *J*/ψ:

 $f_{\rm incoherent} = \mathbf{A} \cdot \mathbf{e}^{-bp_T^2}$

- The fit (solid line) is performed over incoherent region
- Contribution of γγ → e⁺e[−] is normalized from invariant mass fit
- Illustrative normalization for coherent component

Fit to $\log_{10}(p_T^2)$ is used to account for incoherent background in coherent signal

Calculation of coherent cross section in bins of |t|

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|t|\mathrm{d}y} = \frac{N_{J/\psi}^{coh}}{A \times \varepsilon \cdot \mathcal{B} \cdot \mathcal{L}} \cdot \frac{1}{\Delta |t|\Delta y}$$

• $N_{J/\psi}^{coh}$ = yield of coherent J/ψ at a given $|t| = p_T^2$

- ▶ Background from $\gamma\gamma \rightarrow e^+e^-$ is subtracted using invariant mass fit
- Incoherent background is subtracted from fit to log₁₀(p_T²)
- $A \times \varepsilon$ = detector acceptance and efficiency
- \mathcal{B} = branching ratio of $J/\psi \rightarrow e^+e^-$ (PDG)
- *L* = luminosity of data sample
- $\Delta |t|$ = size of bin in |t|

•
$$\Delta y$$
 = size of bin in rapidity (= 2 for $|y| < 1$)

Coherent J/ψ cross section as a function of *t*

- STARLIGHT: Klein, Nystrand, CPC 212 (2017) 258-268
 - Vector meson dominance and Glauber approach
- MS: Mäntysaari, Schenke, Phys.Lett. B772 (2017) 832-838
 - Dipole approach with IPsat amplitude
 - Scaled to XnXn using STARLIGHT
- CCK: Cepila, Contreras, Krelina, Phys.Rev. C97 (2018) no.2, 024901
 - Hot spot model for nucleons, dipole approach
 - Scaled to XnXn using STARLIGHT
- Diffractive dip around $|t|=0.02~\mbox{GeV}^2$ is correctly predicted by the dipole MS and CCK models
- Slope below first diffractive minimum is consistent with the Glauber approach in STARLIGHT

Summary

- The first STAR data on coherent J/ψ photoproduction as a function of t
- Trigger by back-to-back topology in the Barrel Electromagnetic Calorimeter
- Requirement for a neutron emission in a forward direction
- Diffractive structure is present in the *t*-dependence of cross section
- Comparison to the Glauber and dipole models
- Diffractive dip is present in dipole calculations
- The slope of *t*-dependence is correct in the Glauber model