Ultra-Peripheral Collisions in STAR

Jaroslav Adam For the STAR Collaboration

Creighton University, Omaha

College of Arts and Sciences

Brookhaven National Laboratory

Early Career Researcher Symposium, October 11, 2018

Jaroslav Adam (Creighton University)

Ultra-Peripheral Collisions in STAR

Ultra-peripheral heavy-ion collisions

- Heavy ions are accelerated to relativistic energies
- Impact parameter is larger than the sum of nuclear radii
- Electromagnetic field of protons and ions behaves like a beam of quasi-real photons
- Photon beam intensity is proportional to Z²
- Photoproduction in γp and γA interactions
- QED processes in $\gamma\gamma$ interactions

RHIC works as a photon-hadron and photon-photon collider

Physics processes studied in ultra-peripheral collisions

- An ultra-peripheral collision (UPC) (a) creates a Lorentz-contracted field
- We can study photon-nucleus (b) and photon-photon (c) interactions
- Vector mesons in (b) and e^+e^- pairs in (c) are the only produced particles
- Vector mesons are detected by their decays to $\pi^+\pi^-$ or e^+e^- pairs
- Nuclei typically leave intact, but may be excited by electromagnetic field to emit neutrons
- Neutrons can be detected in forward neutron detectors

The STAR experiment

• Central tracking and particle identification, forward counters and neutron detection

- Time Projection Chamber: tracking and identification in $|\eta| < 1$
- Time Of Flight: multiplicity trigger, identification and pile-up track removal
- Barrel ElectroMagnetic Calorimeter: topology trigger and pile-up track removal
- Beam-Beam Counters: scintillator counters in 2.1 < $|\eta|$ < 5.2, forward veto
- Zero Degree Calorimeters: detection of very forward neutrons, $|\eta| > 6.6$

Jaroslav Adam (Creighton University)

Ultra-Peripheral Collisions in STAR

Trigger and data selection for UPC processes

Just two tracks from a vector meson decay, forward neutrons, and nothing else

- Trigger requirements assume two tracks and neutrons in ZDCs
- Activity in TOF as $2 \le n_{\rm hits} \le 6$
- Showers in both ZDCs
 - Energy deposition within 1/4 to 4 beam-energy neutrons
 - Full efficiency to a single neutron
- Veto from both BBCs

Detectors are not in scale in the illustration

Light vector mesons

- Test for photon-pomeron coupling
- Soft-Pomeron model for $\gamma p \rightarrow \rho^0 p$
- Probe to model of Fock states of the photon

- Large sample of UPC $\pi^+\pi^-$ events
- Fit to mass by combination of ρ^0 , ω^0 and direct $\pi^+\pi^-$ pairs

• Photon-nucleus coupling may be coherent or incoherent

Diffractive coherent production is sensitive to nuclear effects

Diffraction origin in hadronic collisions in analogy with optics

Optics

 Electromagnetic wave as solution to Helmholtz equation:

 $(\nabla^2 + k^2)U = 0$

• Wave number $k = 2\pi/\lambda$

- Every point in hole of radius *R* is source of spherical wave
- Diffraction in light intensity at distance *D* when kR²/D << 1

High energy physics

 Wave function as solution to Schröedinger equation

 $-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r})+V(\mathbf{r})\psi(\mathbf{r})=E\psi(\mathbf{r})$

 Scattering is described as outgoing spherical wave

- Typically *R* ~ 1 fm, *D* ≥ 1 cm and *k* ~ √s ~ 200 GeV
- Optical condition is satisfied

Diffraction in ρ^0 photoproduction

- ρ^0 photoproduction cross section
- -t is momentum transfer to target nucleus
- Diffractive dips at -t = 0.018 and 0.043 GeV⁻²
- Two cases of nuclear breakup:
 - In1n: just one neutron at (+) and (-) rapidities
 - XnXn: one or more neutrons at (+) and (-) rapidities
- Exponential slope in dσ/dt is consistent with LHC (JHEP 1509, 095 (2015))

Similarity in exponential parts implies no evidence for increase of nuclear size with photon energy

Quantum interference in UPC

- Each nucleus can be photon emitter or a target
- Photoproduction amplitudes add in destructive interference
- Interference has effects to very low -t

Physics Today 70, 10, 40 (2017)

- Experimentally evident as a downturn at -t close to zero
- Impact parameter is 20 40 fm
- ρ^0 can travel about 1.5 fm before decaying to $\pi^+\pi^-$

Collapse of ρ^0 wave function must occur much later than $\rho^0 \rightarrow \pi^+\pi^-$ decay

Photoproduction of heavy vector mesons

• Can be described by perturbative QCD as two-gluon exchange

• Cross section is sensitive to nuclear gluon distribution $g_A(x, Q^2)$ at the scale $Q^2 = M_{J/\psi}^2/4$:

$$\frac{\mathrm{d}\sigma(\gamma A \to J/\psi A)}{\mathrm{d}t}\bigg|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha_{\mathrm{em}} M_{J/\psi}^5} 16\pi^3 \Big[xg_A(x,Q^2) \Big]^2$$

• Momentum fraction of probed gluons is $x = (M_{J/\psi}/W_{\gamma A})^2$

Gluons in nuclei

• Hadrons are viewed as quarks bound together by gluons

- Gluons can interact with each other
- Density in nuclei is not same as in nucleons alone

- We observe nuclear gluon shadowing at small-x: partial depletion of nuclear (w.r.t. nucleon) gluon density
- Quantified via suppression factor S_A as ratio of experimental γA cross section to calculation with no nuclear effects:

8

$$\mathcal{S}_{\mathrm{A}} = \left[\frac{\sigma_{\gamma \mathrm{A}}^{\mathrm{exp}}}{\sigma_{\gamma \mathrm{A}}^{\mathrm{IA}}} \right]^{1/2}$$

• STAR data on UPC J/ψ will come at $x \approx 0.015$

Data for J/ψ sample

- Data sample of e^+e^- pairs in Au+Au UPC
- Trigger by back-to-back topology in BEMC
- Crystal Ball function for J/ψ
- Main background is from $\gamma\gamma \rightarrow {\it e}^+ {\it e}^-$
- Background is parametrized as:

 $f_{\rm bkg} = (m - c_1)e^{\lambda(m - c_1)^2 + c_2m^3}$

• Parametrization is effective convolution of $\gamma\gamma \rightarrow e^+e^-$ cross section and detector effects

Very clean signal, minimal hadronic background represented by like-sign events

Summary and outlook

- High statistics sample of $\rho^0 \to \pi^+\pi^-$ allowed a series of measurements
- Diffraction pattern is present in cross section *t*-dependence
- Quantum interference at very low t

• Coherent J/ψ photoproduction is a probe of nuclear gluon shadowing

Clean signal with minimal hadronic background

- Analysis of J/ψ and $\gamma\gamma \rightarrow e^+e^-$ in progress
- Prospects for jets in UPC and other final states