Jet and Underlying Event Measurements in p+p collisions at RHIC

Helen Caines - Yale University for the STAR Collaboration

> Hard Probes 2010 Eilat, Israel Oct 10-15 2010

Jets at \sqrt{s} = 200 GeV - the p+p data set

- TPC tracks to identify charged particles contribution.
- Barrel EMCal for neutral energy contribution.

2006 Run Sampled luminosity for Jet-Patch triggers:

~8.7 pb⁻¹ (~8 M events)

Jet-Patch Trigger: BBC coincidence + EMCal Jet-Patch

Jet-Patch: $E_T > 8 \text{ GeV} \text{ in } \Delta \eta$ $x \Delta \phi = 1x1$

Use k_T , Anti- k_T and SISCone, jet energy scale resolution ~15-20% Jet-Patch - NEF FF bias - use non-triggered jet for studies.

k_{T} and jet energy resolution

k⊤ and jet energy resolution

Jets at RHIC

- Jet cross-section in p+p is well described by NLO pQCD calculations over 7 orders of magnitude.
- PYTHIA gives good description of charged particle FF
- Minimum bias particle production also well modeled

Results in agreement pQCD

Strange hadrons in jets

FF are particle species dependent but not well constrained

- Λ , $\overline{\Lambda}$ and K^0_{S} identified via decay products
 - Reduce combinatoric background
 - Place topological cuts
 - Look at higher p_T
- For now ignore remaining background

under mass peaks

Identify jets containing strange particle

Strange hadron fragmentation functions

Data presented at detector level

A. Timmins SQM2009

- Errors estimated average from k_T , anti- k_T and SISCone
- V0 $p_T > 1$ GeV/c artificial cut in distribution

Strange hadron fragmentation functions

Data presented at detector level

- A. Timmins SQM2009
- Errors estimated average from k_T , anti- k_T and SISCone
- V0 $p_T > 1$ GeV/c artificial cut in distribution
- PYTHIA = PYTHIA+GEANT

Description of K^{0}_{s} better than for Λ - as for min-bias p_{T} distributions

Strange ratios in jets

• B/B ratio similar to inclusive

Strange ratios in jets

- B/B ratio similar to inclusive
 Baryon/meson ratio similar to inclusive when measured p_T range considered
- Baryon/meson ratio ~ constant as function of jet p_T

Strange particle production predominantly from jets?

There is also the underlying event

- p-p events are complicated. More than just hard scattering.
- Underlying Event: soft or semi-hard multiple parton interactions (MPI), initial & final state radiation, beam-beam remnants

The Underlying Event is everything BUT the hard scattering

The underlying event

- Leading : One jet in acceptance.
- Back-to-back : Sub-set of leading jets
 |Δφ| > 150, p_{TAway}/p_{TLead} > 0.7
 Hard ISR and FSR suppressed
- TransMax highest Σp_T or ΣN_{track}
 Enhanced probability of containing hard ISR and/or FSR
- TransMin least Σp_T or ΣN_{track}

Sensitive to beam-beam remnants and soft multiple parton interactions.

Compare TransMin and TransMax data from leading and back-to-back jet samples →

Information about large angle initial/final state radiation

Multi-parton interaction energy scaling

- Underlying event tuned to 1.8 TeV
- Hard scattering cut-off for the MPI $P_{T0}(E_{cm}) = P_{T0}(E_{cm}/E_o)^{\epsilon}$
- Other tunes, ε=0.16, predict 35% less (26% more) for RHIC (LHC)

RHIC, Tevatron and CMS ^adata support ε = 0.25

Underlying event is not the same as minbias

Corrected charged particle p_T distributions

Data not corrected to particle level.

CDF \sqrt{s} =1.96 TeV

 leading TransMax > backto-back TransMax
 Significant initial/final state radiation at large angles.

Data not corrected to particle level.

CDF \sqrt{s} =1.96 TeV

- leading TransMax > backto-back TransMax
 Significant initial/final state radiation at large angles.
- STAR \sqrt{s} =200 GeV
- leading TransMax ~
 back-to-back TransMax

Small initial/final state radiation at large angles.

Data not corrected to particle level.

CDF \sqrt{s} =1.96 TeV

- leading TransMax > backto-back TransMax
 Significant initial/final state radiation at large angles.
- STAR \sqrt{s} =200 GeV
- leading TransMax ~
 back-to-back TransMax
 - Small initial/final state radiation at large angles.
- TransMax > TransMin

Data not corrected to particle level.

CDF \sqrt{s} =1.96 TeV

- leading TransMax > backto-back TransMax Significant initial/final state radiation at large angles.
- STAR √s=200 GeV
- leading TransMax ~ back-to-back TransMax
 - Small initial/final state radiation at large angles.
- TransMax > TransMin

Poisson distribution with average $dN_{ch}/d\eta d\phi = 0.36$

• UE ~independent of jet p_T .

Mean p_T charged tracks

Agreement between
 PYTHIA and data OK

Mean p_T charged tracks

Max p⊤ charged track

Max Charged Track p_T		
UE	<data></data>	<pythia></pythia>
CDF	1.2	1.0
STAR	0.65	0.6

G.Webb DNP 2008

Summary of 200 GeV data analysis

- Different jet algorithms produce consistent results
- Charged particle and jet distributions well produced by pQCD
- Details of fragmentation into strange particles are being explored - poorly described by PYTHIA
- Underlying Event largely decoupled from hard scattering
- p_T spectra are significantly softer out of the jet cone than in the jet
- Particle p_T spectra are different in MB than in UE
- PYTHIA's energy scaling for the MPI works for RHIC and the LHC
- Large angle initial/final state radiation is small at RHIC

Energy scaling of the underlying event

- Pivots around the tuning energy
- $\varepsilon = 0.16$ initial estimate

= 0.25 (suggested by 630 GeV Tevatron)

Correct scaling important to know

Underlying event vs jets properties

Back-to-Back, R=0.7, $|\eta_{jet}| < 1-R$, $p_{Ttrack} > 0.2$ GeV/c

Data not corrected to particle level.

• Jet charged track density and $<p_T>$ rise with jet p_T as expected

UE largely independent of jet p_T

Effect of hard scattering cut-off scaling

