

p/K Fluctuations from Au+Au Collisions at RHIC

Jian Tian for the STAR Collaboration

Shanghai Institute of Applied Physics, CAS and University of California, Los Angeles

SQM2009, Sep. 27 - Oct. 2, Búzios

中國科学院上海运用物理研究所 Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Outline

- Motivation and Introduction
 - Baryon number and strangeness fluctuation
 - p/K ratio fluctuation
- Fluctuation Observables
 - $\sigma_{\text{dyn}} \, \text{and} \, \nu_{\text{dyn}}$
- Preliminary Results and Discussions
 - Fluctuations as a function of incident energy and collision centrality
 - Pair production effect
- Summary and Outlook

Baryon Number and Strangeness Fluctuations

Lattice calculations show changes in baryon number and strangeness susceptibilities.

F. Karsch, PoS (CPOD07) 026 and PoS (Lattice 2007) 015

- Susceptibilities are directly related to number fluctuations $~\chi \, \sim ~ \langle \, N^2 \, \rangle$
- Smooth phase transition at $\mu_B = 0$
- JiThe susceptibility may diverge at the gratitical point.

p/K Fluctuation

Proton and kaon are good proxies for baryon and strangeness

 \rightarrow fluctuations of this ratio may be sensitive to the QGP phase change.

In the picture of quark coalescence for hadronization in nucleus-nucleus collisions,

proton/kaon ~ baryon/meson

 \rightarrow local parton densities \rightarrow critical point

 \rightarrow critical point

Kaons and protons can be identified in the same y_T range.

STAR Experiments and Dataset

Run04 Au+Au 200, 62.4 GeV |Vz| < 15cm proton momentum :

 p_{τ} > 0.4GeV/c, p <1.1GeV/c kaon momentum:

 $p_{T} > 0.2 \text{GeV/c}, p < 0.6 \text{GeV/c}$

STAR: a complex set of various detectors, with wide range of measurements .

TPC: measure momentum and dE/dx, identify particles of certain momentum.

Transverse Rapidity Distribution

Using the definition of transverse rapidity:

$$y_{T} = ln(\frac{m_{T} + p_{T}}{m_{0}})$$

- No overlap for proton and kaon;
- Identified proton and kaon are in the same y_T range, i.e. have the same transverse velocity.

Fluctuation Observables

> The dynamical fluctuations σ_{dyn} [1] are estimated by,

$$\sigma_{dyn} = sign(\sigma_{data}^2 - \sigma_{mixed}^2) \sqrt{|\sigma_{data}^2 - \sigma_{mixed}^2|}$$

Mixed events — random selection of tracks max one track from each event — Multi-event mixing.

> The deviation from Poisson statistical limit $v_{dvn,pK}$ [2],

$$v_{dyn,pK} = \frac{\left\langle N_{p} \left(N_{p} - 1 \right) \right\rangle}{\left\langle N_{p} \right\rangle^{2}} + \frac{\left\langle N_{K} \left(N_{K} - 1 \right) \right\rangle}{\left\langle N_{K} \right\rangle^{2}} - 2\frac{\left\langle N_{p} N_{K} \right\rangle}{\left\langle N_{p} \right\rangle \left\langle N_{K} \right\rangle}$$

Approximate equality: $\sigma^2_{dyn} = v_{dyn}$

- Depends on the number of denominator (p/K or K/p) not being too small [2];
- Confirmed for K/ π [3] and p/ π fluctuations measurements;
- We will investigate approximation for K/p and p/K.

[1] S.V. Afanasiev et al. , Phys. Rev. Lett. 86, 1965 (2001).

[2] C. Pruneau, S. Gavin, and S. Voloshin, Phys. Rev. C 66, 044904 (2002).

[3] B. I. Abelev et al. Phys. Rev. Lett. 103, 092301 (2009).

Ratio Distribution

p/K ratio distribution from real events and mixed events.

- Have on average the same particle ratios;
- Non-dynamical fluctuations dominate the fluctuations.

Ratio Fluctuations in Central Collisions

Statistical errors only for STAR results.

Tim Schuster CPOD 2009 arXiv:0906.3229v1

- Interesting evolution of K/p fluctuations from lowest SPS energies to RHIC energy;
- Data are significantly different from model calculations;
- The p/K and K/p fluctuations for σ_{dyn} at RHIC are not identical: perhaps related to small numbers of particle.

- Fluctuations from all centralities are at small scale;
- For the most central collisions, $\nu_{dyn,pK}$ value is close to p/K σ_{dyn} and K/p σ_{dyn} , with large errors!
- Results suggest new analyses approaches should be considered.

Effect from Pair Production

- Baryon numbers and strangeness quantum numbers are pairproduced in nucleus-nucleus collisions!
- Mixed events can be constructed to study the effects of pair production — mixed events stem from independent events, contain different correlations from pair production.

- p-pbar and K⁺-K⁻ correlation will enhance the relative fluctuation;
- p-K correlations will reduce the relative fluctuation;
- Correlation of K⁺-K⁻ pair have larger effect than p-pbar pair.

Constrained Reference

- Choose a mixing sample from 4 independent events with same multiplicity — p, pbar, K⁺ and K⁻ are from these four independent events, respectively — Four-event mixing.
- In this sample individual particle fluctuations unrelated to pair production mechanism are included.
- > We differentiate from other variables by calling this,

$$\sigma_{\rm dyn}^{\rm pair} = {\rm sign}(\sigma_{\rm data}^2 - \sigma_{\rm 4-mixed}^2) \sqrt{|\sigma_{\rm data}^2 - \sigma_{\rm 4-mixed}^2|}$$

Centrality Dependence

p/K fluctuations using four-event mixing method

- Two incident energies results are consistent;
- Maximum fluctuations at mid-centralities, different centrality from maximum <p/k>;
- ✓ For central collisions, 62.4
 GeV have larger fluctuation than 200 GeV;
- ✓ Statistical errors only.

Resonance Decay Effect

- φ decay will increase the p/K ratio fluctuation;
- With/without ϕ decays \rightarrow the difference is small;
- Simulation shows that $\phi \rightarrow K^+K^-$ is not the main source for kaon pair correlations.

Summary

- We have measured p/K fluctuations on an event-by-event basis at RHIC ,
 - σ_{dyn} (NA49 scheme--multi-event mixing) and ν_{dyn} both show small fluctuations for p/K.
 - \bullet Possible deviations between p/K and K/p $\,\sigma_{_{dyn}}$ are observed, which may possibly related to low multiplicities.
- Baryon number and strangeness fluctuations can be affected significantly by the pair production dynamics,
 - We developed a new method using 4-event mixing,

$$\sigma_{dyn}^{pair} = \operatorname{sign}(\sigma_{data}^2 - \sigma_{4-mixed}^2) \sqrt{|\sigma_{data}^2 - \sigma_{4-mixed}^2|}$$

- σ_{dyn}^{pair} changes as a function of centrality and has the highest amplitude at mid-centrality with dN/dη ~150 200.

- TOF upgrade will enhance our capability of particle identification, especially for proton and kaon;
- RHIC beam energy scan program provides us a wonderful opportunity to search for the QCD critical point via particle ratio fluctuation;
- p*K may be more sensitive to baryon number and strangeness fluctuations than p/K. We have been investigating this as well.

Thanks for your attention!

Extra slides

$p^{*}K/(\pi^{*}\pi)$ Fluctuations

Correlations between baryon number and strangeness, p*K may be more sensitive to p/K;

> Try p*K/($\pi^*\pi$) where π is for normalization.

✓ change significantly for two incident energies

- ✓ Only two points
- ✓ Statistical errors only

K/p Ratio Distribution

AR