

Supported in part by

Nuclear deformation effects via U+U collisions from STAR

Jiangyong Jia for the STAR Collaboration

See poster by Chunjian Zhang on Jan 11, id105

The VIth International Conference on the INITIAL STAGES OF HIGH-ENERGY NUCLEAR COLLISIONS

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

Jan 14, 2021

Connecting the final state to the initial state²

Reflected by $p(v_n)$, $p([p_T])$, and $p(v_n, [p_T])$

Connecting the initial state to nuclear geometry

• Fluctuations of v_n and $[p_T]$ are sensitive to nuclear geometry

• Fluctuations are broader in U+U than Au+Au due to large β_2

 β_2 of ²³⁸U is large

reference	Raman et al.	Löbner et al.	Möller et al.	Möller et al.
method	\exp	\exp	FRDM	FRLDM
eta_2	0.286	0.281	0.215	0.236

BNL nuclear database

body+body tin+tin body+tin

 β_2 of ¹⁷⁹Au is small and can be used as baseline

reference	Möller et al.	Möller et al.	CEA DAM
method	FRDM	FRLDM	HFB
eta_2	-0.131	-0.125	-0.10

Probe nuclear structure at a shorter time scale: $\sim 10^{-23}$ s vs 10^{-8} - 10^{-12} s for isomer

U+U: expect anti-corr. for v_2 -[p_T] in UCC

G. Giacalone PRL124, 202301 (2020)

STAR detector and datasets

- Datasets
 - Au+Au@200 GeV 2010 and 2011
 - U+U@193 GeV 2012.

- Measurement based on TPC
 - $|\eta| < 1.0, 0.2 < p_T < 2 \text{ GeV/c}$
- Centrality based on N_{ch}^{rec} with $|\eta| < 0.5$

Three topics: $p(v_n)$, $p([p_T])$, and $p(v_n, [p_T])$

Flow fluctuations

- STAR has shown flow fluctuations v_2 {4} in central collisions are influenced by nuclear deformation
 - Negative in near-spherical Au+Au, positive in deformed UU
- Nuclear deformation also seen in 2PC v_n in UCC.

PRL 115, 222301 (2015)

U+U

[p_T] fluctuations

$\begin{array}{l} \text{Quantified with variance and skewness} \\ \langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle = \left(\frac{\sum_{i \neq j} w_i w_j (p_{\mathrm{T},i} - \langle p_{\mathrm{T}} \rangle) (p_{\mathrm{T},j} - \langle p_{\mathrm{T}} \rangle)}{\sum_{i \neq j} w_i w_j} \right)_{\mathrm{evt}} \delta p_{\mathrm{T}} = p_{\mathrm{T}} - [p_{\mathrm{T}}] \\ \text{self-correlations removed} \\ \text{w is weight for each particle} \\ \langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle = \left(\frac{\sum_{i \neq j \neq k} w_i w_j w_k (p_{\mathrm{T},i} - \langle p_{\mathrm{T}} \rangle) (p_{\mathrm{T},j} - \langle p_{\mathrm{T}} \rangle) (p_{\mathrm{T},j} - \langle p_{\mathrm{T}} \rangle) (p_{\mathrm{T},k} - \langle p_{\mathrm{T}} \rangle)}{\sum_{i \neq j \neq k} w_i w_j w_k} \right)_{\mathrm{evt}}$

Independent source picture:

convolution of signal from each source

$$egin{aligned} &\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}}
angle_{\mathrm{AA}} &\sim rac{\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}}
angle_{\mathrm{pp}}}{N_{\mathrm{part}}} \ &\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \delta p_{\mathrm{T}}
angle_{\mathrm{AA}} &\sim rac{\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \delta p_{\mathrm{T}}
angle_{\mathrm{pp}}}{N_{\mathrm{part}}^2} \end{aligned}$$

- Expected to follow a power-law function of N_{part} or N_{ch}
- Particle $p_T > 0 \rightarrow$ skewness in each source is positive

[p_T] fluctuations

7

• Au+Au: follow power-law decrease, but with strong deviation in central

[p_T] fluctuations

- Au+Au: follow power-law decrease, but with strong deviation in central
- U+U: large enhancement in mid-central and central \rightarrow size fluctuations

[p_T] skewness: Au+Au data

Quantify with normalized quantities

G Giacalone, F.Gardim, J.Noronha-Hostler, J.Ollitrault 2004.09799

Standard skewness

Intensive skewness

Standard skewness approximately follows $1/\sqrt{N_{ch}}$ scaling Intensive skewness is ~ const

[p_T] skewness: compare to U+U data

Quantify with normalized quantities

G Giacalone, F.Gardim, J.Noronha-Hostler, J.Ollitrault 2004.09799

Standard skewness

Intensive skewness

U+U shows significant enhancement in central region

[p_T] skewness: compare to Trento

Quantify with normalized quantities

G Giacalone, F.Gardim, J.Noronha-Hostler, J.Ollitrault 2004.09799

Standard skewness

Intensive skewness

Flow- $[p_T]$ correlations

Three-particle v_n - v_n - $[p_T]$ correlator in a normalized form:

 $\delta p_{\mathrm{T}} = p_{\mathrm{T}} - [p_{\mathrm{T}}] \quad \mathrm{cov}(v_n^2, [p_{\mathrm{T}}])$ $\langle v_n^2 \delta p_{\mathrm{T}} \rangle \equiv \left\langle \frac{\sum_{i \neq j \neq k} w_i w_j w_k e^{in\phi_i} e^{-in\phi_j} (p_{\mathrm{T},k} - \langle \langle p_{\mathrm{T}} \rangle \rangle)}{\sum_{i \neq j \neq k} w_i w_j w_k} \right\rangle_{\mathrm{evt}}$ $\frac{\langle v_n^2 \delta p_{\mathrm{T}} \rangle}{\sqrt{\langle var(v_n^2) \langle \delta p_T \delta p_T \rangle \rangle}} \quad \text{P. Bozek 1601.04513}$ Pearson correlation coefficient $\mathrm{var}ig(v_n^2ig) = v_n\{2\}^4 - v_n\{4\}^4 \quad egin{array}{c} \langle \delta p_\mathrm{T} \delta p_\mathrm{T}
angle = \Big\langle rac{\sum_{i
eq j} w_i w_j (p_{\mathrm{T},i} - \langle \langle p_\mathrm{T}
angle) (p_{\mathrm{T},j} - \langle \langle p_\mathrm{T}
angle))}{\sum_{i
eq j} w_i w_j} \Big
angle_{\mathrm{vrt}}$

v_n^2 -[p_T] correlation

Clear sign change in UU around 8% centrality Au+Au remains positive Similar between Au+Au and UU

Compare to Trento initial-state model

Trento: private calculation provided by Giuliano Giacalone, PRC102, 024901(2020), PRL124, 202301(2020)

Calculated via predictor with assumption

Trento does not describe data but shows an hierarchical β dependence for v₂-p_T in U+U. Trento shows sign-change from Uranium deformation, prefers 0.28< β <0.4 Trento shows that v₃-p_T correlations are insensitive to deformation.

Compare to (boost-invariant) CGC+Hydro model⁵

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke Phys. Rev. C 102, 034905 (2020)

- Without deformation, CGC+hydro model over-predicts the $\rho(v_2^2, p_T)$
- With increasing β_2 , model could describe the trend of $\rho(v_2^2, p_T)$.
- Model shows that the $\rho(v_3^2, p_T)$ are insensitive to β_2 .

Sign-change of $\rho(v_2^2, p_T)$ is due to deformation effect, model prefers a β_2 value around 0.28< β_2 <0.4 with large uncertainty.

Can CGC+hydro model describe other observables?

16

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke Phys. Rev. C 102, 034905 (2020)

UU with β =0.28 overshoots the v₂ and [p_T] fluctuations

Model cannot describe all observables simultaneously. Our data provide lot of inputs for improvement.

Summary

- Hydro response: azimuthal and radial flow \rightarrow shape and size fluctuations
 - Inferred from fluctuations in v_n , $[p_T]$ and v_n - $[p_T]$ correlations

Linear response approximation: $\epsilon_{
m n}
ightarrow v_{
m n} \qquad rac{1}{R}
ightarrow [p_{
m T}] \qquad \langle \epsilon_{
m n}^2 rac{1}{R}
angle
ightarrow \langle v_{
m n}^2 \, p_{
m T}
angle$

- These observables are sensitive to the quadrupole deformation parameter β_2
 - Strategy: compare highly-deformed ²³⁸U+²³⁸U and near-spherical ¹⁹⁷Au+¹⁹⁷Au

$$ho(r, heta) = rac{
ho_0}{1+e^{(r-R_0(1+eta_2 Y_{20}(heta))/a}}$$

- Compared to Au+Au, results from U+U collisions show
 - Enhance v_2 , $[p_T]$ and v_2 - $[p_T]$ fluct., but little influence on v_3 and v_3 - $[p_T]$ fluct.
 - Effects largest in central collisions, but also observed in mid-central collisions.

 \rightarrow nuclear deformation influences collisions over a wide centrality range.

- Qualitatively described by IS model & IS+hydro model, but not quantitatively.
 - Data prefers a quadrupole deformation of $0.28 \leq \beta_2 \leq 0.40$ with large uncertainty
 - Data can improve model tuning and provide new ways to probe nuclear structure.

Additional materials

Covariance: $\langle v_n^2 \delta p_T \rangle$

Hydro description for $\langle v_n^2 \delta p_T \rangle$ and v_n

p_T dependence

Increase at low N_{ch} and decrease at high N_{ch}: more significant sign change

• Similar p_T dependence also seen in hydro model.

[p_T] skewness: hydro prediction

Quantify with normalized quantities

Standard skewness

G Giacalone, F.Gardim, J.Noronha-Hostler, J.Ollitrault 2004.09799

Intensive skewness

Hydro calculation (points) can be approximated by initial-state predictor (lines): $[p_T] \propto \frac{\text{Energy}_{ini}}{\text{Entropy}_{ini}} \sim \frac{1}{R}$