J/ψ polarization measurement in p+p collisions at √s = 500 GeV with the STAR experiment Barbara Trzeciak, for the STAR Collaboration Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague #### <u>Abstract</u> Despite extensive studies, the J/ ψ production mechanism in hadron collisions is not yet exactly known. Measurements of the J/ ψ polarization provide constraints for the J/ ψ production models and new insight into the J/ ψ production mechanism. This poster presents a measurement of J/ ψ polarization in p+p collisions at \sqrt{s} = 500 GeV in the STAR experiment. The measurement has been performed in a wide transverse momentum range of 5 < p_T < 16 GeV/c. Two polarization parameters λ_{θ} and λ_{ϕ} , related to the polar and azimuthal anisotropy respectively, have been extracted in the helicity and Collins-Soper reference frames. The frame invariant parameter, λ_{inv} , has also been determined in these two frames. ## Dataset and cuts $$J/\psi \rightarrow e^+e^-$$ (BR 5.9%) - → p+p collisions at $\sqrt{s} = 500$ GeV from the year of 2011 - → High Tower Trigger transverse energy in a BEMC tower $E_{T} > 4.3$ GeV - → Integrated luminosity ~ 22 pb⁻¹ - At least one electron from the J/ψ decay is required to fire the trigger J/ψ mass window: 2.8 - 3.3 GeV/c² #### Electron kinematic cuts: - $p_{\rm T} > 0.3 \; {\rm GeV/c}$ - $|\eta| < 1$ - $ho_T > 3.5 \ GeV/c$ for electron from J/ ψ decay that fired the trigger #### <u>Method</u> production quarkonium rest frame \rightarrow Angular distribution of a lepton pair from the J/ ψ decay: - θ polar angle between the momentum of a positive lepton in the J/ψ rest frame and the polarization axis *z* θ corresponding azimuthal angle - $^{\prime}$ ϕ corresponding azimuthal angle - → *Polarization z* axis: - " Helicity (HX) frame: along the J/ψ momentum in the center of mass of the colliding beams - $^{\prime}$ *Collins-Soper (CS) frame*: bisector of the angle formed by one beam direction and the opposite direction of the other beam in the J/ψ rest frame → Frame invariant parameter Good cross-check on measurements performed in different frames [1] # Raw $\cos \theta$ and φ , and corrections - \checkmark J/ ψ signal obtained using bin counting method in each cosθ and ϕ bin, in 5 p_T bins and in HX and CS frames - Combinatorial and correlated backgrounds subtracted Total corrections include: acceptance, tracking, electron identification and trigger efficiencies, obtained using MC simulations with input $\cos\theta$ and ϕ distributions obtained from the data # Corrected $\cos\theta$ and φ distributions in HX and CS frames \checkmark Simultaneous fit to $cos\theta$ and ϕ distributions ### Results $\rightarrow \lambda_{\theta}$ parameter in HX frame vs p_{T} and x_{T} - Similar trend observed in 500 and 200 GeV [2] p+p collisions in the HX frame - \checkmark Common trend of results from different experiments which is towards longitudinal polarization with increasing $x_{_{\rm T}}$ - ✓ Data can help to constrain Color-Octet Long-Distance Matrix Elements for NRQCD [3] - $\rightarrow \lambda_0, \lambda_0$ and λ_{inv} parameters in HX and CS frames vs p_T - $\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 \lambda_{\omega}}$ - \checkmark No strong azimuthal anisotropy observed in the HX frame \checkmark Different values of the λ_{θ} and λ_{ϕ} polarization parameters in the CS frame, but frame invariant parameters, λ_{inv} , are consistent in both frames - ✓ Trend towards longitudinal polarization with increasing p_T # **Conclusions** - → Longitudinal J/ ψ polarization in the HX frame at $\sqrt{s} = 500$ GeV - No strong azimuthal anisotropy observed - x_T dependence of λ_θ observed - → Frame invariant parameters agree in the HX and CS frames [1] Eur. Phys. J. C 69, 657 (2010) [2] Phys, Lett. B739, 180 (2014) [3] Phys. Rev. Lett. 108 (2012) 242004, Phys.Rev. D90 (2014) 1, 014002, Phys.Rev.Lett 112 (2014) 18, JHEP 1505 (2015) 103 and private communication (2014) 10, JHEP 1505 (2015) 105 and private communicat