

J/ψ polarization measurement in p+p collisions at √s = 500 GeV with the STAR experiment

Barbara Trzeciak, for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

<u>Abstract</u>

Despite extensive studies, the J/ ψ production mechanism in hadron collisions is not yet exactly known. Measurements of the J/ ψ polarization provide constraints for the J/ ψ production models and new insight into the J/ ψ production mechanism. This poster presents a measurement of J/ ψ polarization in p+p collisions at \sqrt{s} = 500 GeV in the STAR experiment. The measurement has been performed in a wide transverse momentum range of 5 < p_T < 16 GeV/c. Two polarization parameters λ_{θ} and λ_{ϕ} , related to the polar and azimuthal anisotropy respectively, have been extracted in the helicity and Collins-Soper reference frames. The frame invariant parameter, λ_{inv} , has also been determined in these two frames.

Dataset and cuts

$$J/\psi \rightarrow e^+e^-$$
 (BR 5.9%)

- → p+p collisions at $\sqrt{s} = 500$ GeV from the year of 2011
- → High Tower Trigger transverse energy in a BEMC tower $E_{T} > 4.3$ GeV
- → Integrated luminosity ~ 22 pb⁻¹
- At least one electron from the J/ψ decay is required to fire the trigger

 J/ψ mass window: 2.8 - 3.3 GeV/c²

Electron kinematic cuts:

- $p_{\rm T} > 0.3 \; {\rm GeV/c}$
- $|\eta| < 1$
- $ho_T > 3.5 \ GeV/c$ for electron from J/ ψ decay that fired the trigger

<u>Method</u>

production

quarkonium

rest frame

 \rightarrow Angular distribution of a lepton pair from the J/ ψ decay:

- θ polar angle between the momentum of a positive lepton in the J/ψ rest frame and the polarization axis *z* θ corresponding azimuthal angle
 - $^{\prime}$ ϕ corresponding azimuthal angle
 - → *Polarization z* axis:
 - " Helicity (HX) frame: along the J/ψ momentum in the center of mass of the colliding beams
 - $^{\prime}$ *Collins-Soper (CS) frame*: bisector of the angle formed by one beam direction and the opposite direction of the other beam in the J/ψ rest frame

→ Frame invariant parameter

Good cross-check on measurements performed in different frames [1]

Raw $\cos \theta$ and φ , and corrections

- \checkmark J/ ψ signal obtained using bin counting method in each cosθ and ϕ bin, in 5 p_T bins and in HX and CS frames
- Combinatorial and correlated backgrounds subtracted

Total corrections include: acceptance, tracking, electron identification and trigger efficiencies, obtained using MC simulations with input $\cos\theta$ and ϕ distributions obtained from the data

Corrected $\cos\theta$ and φ distributions in HX and CS frames

 \checkmark Simultaneous fit to $cos\theta$ and ϕ distributions

Results

 $\rightarrow \lambda_{\theta}$ parameter in HX frame vs p_{T} and x_{T}

- Similar trend observed in 500 and 200 GeV [2] p+p collisions in the HX frame
- \checkmark Common trend of results from different experiments which is towards longitudinal polarization with increasing $x_{_{\rm T}}$
- ✓ Data can help to constrain Color-Octet Long-Distance Matrix Elements for NRQCD [3]
- $\rightarrow \lambda_0, \lambda_0$ and λ_{inv} parameters in HX and CS frames vs p_T

- $\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 \lambda_{\omega}}$
- \checkmark No strong azimuthal anisotropy observed in the HX frame \checkmark Different values of the λ_{θ} and λ_{ϕ} polarization parameters in the CS frame, but frame invariant parameters, λ_{inv} , are consistent in both frames
- ✓ Trend towards longitudinal polarization with increasing p_T

Conclusions

- → Longitudinal J/ ψ polarization in the HX frame at $\sqrt{s} = 500$ GeV
 - No strong azimuthal anisotropy observed
 - x_T dependence of λ_θ observed
- → Frame invariant parameters agree in the HX and CS frames

[1] Eur. Phys. J. C 69, 657 (2010) [2] Phys, Lett. B739, 180 (2014)

[3] Phys. Rev. Lett. 108 (2012) 242004, Phys.Rev. D90 (2014) 1, 014002, Phys.Rev.Lett 112 (2014) 18, JHEP 1505 (2015) 103 and private communication

(2014) 10, JHEP 1505 (2015) 105 and private communicat

