

Barbara Trzeciak for the STAR Collaboration Czech Technical University in Prague

High Energy Physics in the LHC Era 16-20 December 2013 Valparaiso - CHILE

MINISTRY OF EDUCATION, YOUTH AND SPORTS

OP Education for Competitiveness

INVESTMENTS IN EDUCATION DEVELOPMENT

Outline

- Motivation
- J/ψ production and polarization in p+p collisions at 200 GeV
- J/ψ production and elliptic flow in Au+Au collisions at 200 GeV
- \times Energy dependence of J/ ψ RAA
- × Outlook
- Summary

STAR Charmonia at RHIC - Motivation

- Charmonia suppression in QGP in heavy-ion collisions due to *color screening*
- Suppression of different states is determinate by T_c and their binding energy - QGP thermometer

(2009)

STAR Charmonia at RHIC - other effects

But there are more complications:

Still unknown **production mechanism** in elementary collisions - measure p_T spectra and polarization

Feed-down

- prompt J/ψ production:
 - ► direct J/ψ (~60%)
 - feed down from ψ' (~10%) and χ_c (~30%) decays
- non-prompt: B-mesons feed-down (10-25% at 4-12 GeV/c, STAR, Phys. Lett. B722 (2013) 55)
- Cold Nuclear Matter (CNM) effects nuclear shadowing, Cronin effect, nuclear absorption, ...
- Other Hot Nuclear
 Matter effects recombination, ...

How to disentangle color screening vs CNM effect vs recombination

- Energy dependence of the J/ψ production - varying relative contributions
- High-p_T J/ψ almost not affected by CNM effects and recombination

STAR high-p⁺ signal:

STAR

Measure J/ ψ p_T spectra, R_{AA}, polarization, elliptic flow ...

Solenoidal Tracker At RHIC : $-1 < \eta < 1, 0 < \phi < 2\pi$ Barrel ElectroMagnetic Calorimeter Magnet Time Of Flight Time Projection Chamber Beam Beam Counter \checkmark Vertex Position Detector

- Large acceptance:
 - $|\eta| < 1, 0 < \phi < 2\pi$

STAR STAR EXPERIMENT, PID $J/\psi \rightarrow e^+ e^- (BR 5.9\%)$

Solenoidal Tracker At RHIC : $-1 < \eta < 1, 0 < \phi < 2\pi$ Barrel ElectroMagnetic Calorimeter Magnet Time Of Flight Time Projection Chamber Beam Beam Counter \checkmark dE/dx (keV/cm) \checkmark Au + Au 200 GeV ^PdE/dx etector 2 0.5 $\mathbf{2}$ Momentum (GeV/c)

Large acceptance:

 $|\eta| < 1, 0 < \phi < 2\pi$

ТРС

- · Tracking: p_T, η, φ
- dE/dx: PID

Solenoidal Tracker At RHIC : $-1 < \eta < 1, 0 < \phi < 2\pi$

19 December 2013

ľΧħ

INVESTMENTS IN EDUCATION DEVELOPMENT

STAR EXPERIMENT, PID $J/\psi \rightarrow e^+e^-$ (BR 5.9%)

19 December 2013

STAR EXPERIMENT, PID $J/\psi \rightarrow e^+ e^-$ (BR 5.9%)

19 December 2013

STAR

'XA

INVESTMENTS IN EDUCATION DEVELOPMEN

STAR EXPERIMENT, PID $J/\psi \rightarrow e^+ e^-$ (BR 5.9%)

19 December 2013

STAR

Ϋ́́Ύ́

INVESTMENTS IN EDUCATION DEVELOPMEN

J/ψ spectra in p+p collisions at 200 GeV

- <u>prompt NLO CS+CO</u> model describes the data for $p_T > 4$ GeV/c
- prompt CEM model can reasonably well describe the p_T spectra (overpredicts the data at $p_T \sim 3$ GeV/c)
- ´ <u>direct NNLO* CS</u> model misses high-p⊤ part
 - J/ψ p_T range extended to 0-14 GeV/c
 - STAR results consistent with the PHENIX result

J/ψ polarization in p+p collisions at 200 GeV

Polarization parameter λ_{θ} is measured in helicity frame at |y|<1 and $2<p_{T}<6$ GeV/c

- ✓ RHIC data indicate trend towards longitudinal polarization with increasing p_T
- The result is consistent with NLO⁺ CSM
- 19 December 2013

J/ψ polarization in p+p collisions at 200 GeV

Polarization parameter λ_{θ} is measured in helicity frame at |y|<1 and $2<p_{T}<6$ GeV/c

- \checkmark RHIC data indicate trend towards longitudinal polarization with increasing p_{T}
- \checkmark The result is consistent with NLO+ CSM
- 19 December 2013

J/ψ v₂ in semi-central Au+Au collisions at 200 GeV

✓ J/ ψ v₂ is consistent with zero at p_T > 2 GeV/c

• disfavors the case that J/ ψ with $p_T > 2$ GeV/c are produced dominantly by coalescence from thermalized (anti-)charm quarks

J/ψ p⊤ spectra in Au+Au collisions at 200 GeV

At low p_T J/ψ spectra softer than the TBW prediction from light hadron
 small radial flow ?
 recombination at low p_T

J/ ψ p_T range extended to 0-10 GeV/c

Tsallis Blast-Wave model: Z.Tang et al., Phys. Rev. C 79 (2009) 051901 Z. Tang, L. Yi, L. Ruan, M. Shao, H. Chen, et al,, Chin. Phys. Lett. 30 (2013) 031201 PHENIX: Phys. Rev. Lett. 98 (2007) 232301 STAR high- p_T : Phys. Lett. B 722 (2013) 55 STAR low- p_T : arxiv:1310.3563 STAR high- p_T Cu+Cu : Phys. Rev. C 80 (2009) 041902

J/ψ yield in Au+Au collisions at 200 GeV - comparison to models

Hydro: U. W. Heinz and C. Shen (2011), private communication Liu et. all: Y. Liu,Z. Qu, N. Xu, and P. Zhuang, Phys. Lett. B 678 (2009) 72 STAR low-p_T : arxiv:1310.3563

Viscous hydrodynamics

prediction for two J/ ψ decoupling temperatures: T = 120 MeV and T = 165 MeV

Fails to describe the low- $p_T J/\psi$ yield (< 2 GeV/c) and J/ψ elliptic flow at $p_T > 2$ GeV/c

Liu et. al.

J/ψ suppression due to color screening + statistical regeneration + B-meson feed-down + formation-time effects

Describes the p_T spectrum

$J/\psi R_{AA} vs p_T in Au+Au collisions at 200 GeV$

Y.Liu et al., Phys. Lett. B, 678 (2009) 72 Zhao, Rapp, Phys. Rev. C 82 (2010) 064905 PHENIX: Phys. Rev. Lett. 98 (2007) 232301

STAR high-p_T : Phys. Lett. B 722 (2013) 55 STAR low-p_T : arxiv:1310.3563

- J/ψ suppression decreases with increasing p_T across the centrality range
- Strong suppression at low p_T
 (< 3 GeV/c) for all centralities
- At high-p_⊤:
 - suppression for central collisions
 - R_{AA} consistent with unity in (semi-)peripheral collisions
- Data agrees with theoretical calculations
 - color screening + statistical regeneration
 - Zhao et. al: + formation-time effect and B-hadron feed-down

JVESTMENTS IN EDUCATION DEVELOPMEN

J/ψ R_{AA} vs N_{part} in Au+Au collisions at 200 GeV

STAR high- p_T : Phys. Lett. B 722 (2013) 55 STAR low- p_T : arxiv:1310.3563

- Suppression increases with collision centrality
- High-p_T R_{AA} is systematically higher
- High-p_T J/ψ suppressed in central collisions
 - QGP effects ?

 ✓ Both models describe the data well at low p_T

J/ψ R_{AA} vs N_{part} in Au+Au collisions at 200 GeV

Y.Liu et al., Nucl. Phys A 834 (2010) 317c Zhao, Rapp, Phys. Rev. C 82 (2010) 064905 PHENIX: Phys. Rev. Lett. 98 (2007) 232301

STAR high-p_T : Phys. Lett. B 722 (2013) 55 STAR low-p_T : arxiv:1310.3563

- Suppression increases with collision centrality
- High-p_T R_{AA} is systematically higher
- ✓ High-p_T J/ψ suppressed in central collisions
 - QGP effects ?
- Both models describe the data well at low p_T
- At high p_T Liu et al. model describes the data well, while Zhao et. al model underpredicts the R_{AA}

Energy dependence of J/ ψ R_{AA}

theoretical calculation: X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 CEM: R. E. Nelson, R. Vogt and A. D. Frawley, Phys. Rev. C

87.014908 (2013).

- Suppression of J/ψ at 62.4 and 39 GeV no strong energy dependence of J/ψ R_{AA}
- Data agrees with the prediction of the two-component model
 - p+p reference for 62.4 and 39 GeV data from Color Evaporation Model (CEM) large theoretical uncertainties

STAR J/ψ in U+U collisions at 193 GeV

Non- spherical nucleus - higher initial energy density

19 December 2013

INVESTMENTS IN EDUCATION DEVELOPMENT

Muon Telescope Detector (MTD)

Multi-gap Resistive Plate Chamber (MRPC) - gas detector Acceptance: 45% at $|\eta| < 0.5$ Long-MRPCs Electronics same as in STAR TOF With <u>*HFT*</u>, $B \rightarrow J/\psi + X$ decays possible to study 300 pb⁻¹ p+p, 20 nb⁻¹Au+Au, 0-20% 20 nb ¹Au+Au, 0-80% 1.4 1.2 0.15

- No y conversion
- Much less Dalitz decay contribution Less affected by radiative looses in the materials

- Excellent mass resolution
- Trigger capability for low and high p⊤ J/ψ in central Au+Au

Full system in 2014

19 December 2013

Summary

- $^{\rm x}$ NLO CS+CO and CEM models describe J/ ψ p_T spectrum in p+p, polarization consistent with NLO+ CSM
- ^x J/ ψ v₂ measurement disfavors the case when J/ ψ is produced dominantly by coalescence from thermalized (anti-)charm quarks for p_T > 2 GeV/c
- ^{*} J/ ψ suppression in Au+Au increases with centrality and decreases with p_T at high p_T suppression for central collisions
- $^{\scriptscriptstyle x}$ Similar J/ ψ suppression at 200, 62.4 and 39 GeV

Czech Technical University in Prague

Faculty of Nuclear Science and Physical Engineering

Project " Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague "

CZ.1.07/2.3.00/30.0034

Thank you !

Backup

J/ψ-hadron correlations in p+p collisions at 200 GeV

Phys. Lett. B 722 (2013) 55

B \rightarrow **J**/ ψ feed-down Model based extraction using PYTHIA

- Extracted from near side J/ ψ -h correlation
- B-hadron feed-down contribution of 10-25% at 4-12 GeV/c
- Result consistent with FONLL+CEM calculation

$J/\psi R_{AA}$ in d+Au collisions STAR at 200 GeV $d+Au \rightarrow J/\psi+X$ STAR lyl<1</p> $d+Au \rightarrow J/\psi+X$ STAR lyl<1 1.8 1.8 (minimum bias) PHENIX lyl<0.35 $\sqrt{s_{NN}} = 200 \text{ GeV}$ PHENIX lyl<0.35 EPS09 + σ_{abs} (3 mb) 1.6 1.6 EPS09 + σ_{abs} (3 mb) N_{Coll} 1.4 p+p 1.4 p+p stat. PHENIX. Under Hall ч^{1.2⁷ Ш} p+p syst. PHENIX. 0.8 0.8

 $\checkmark \quad \text{Measurement of } J/\psi \text{ in } d\text{+} \text{Au collisions provides information on CNM effects}$

- ✓ Good agreement with model predictions using EPS09 nPDF parametrization for the shadowing, and J/ ψ nuclear absorption cross section $\sigma_{abs}^{J/\psi} = 2.8^{+3.5}_{-2.6}$ (stat.)^{+4.0}_{-2.8} (syst.)^{+1.8}_{-1.1} (EPS09) mb obtained from a fit to the data
- \checkmark STAR results consistent with PHENIX measurements
- 19 December 2013

J/ψ R_{AA} vs N_{part} in Au+Au collisions at 200 GeV

Higher R_{AA} for STAR than CMS for all centralities