

Barbara Trzeciak for the STAR Collaboration Warsaw University of Technology/ Lawrence Berkeley National Laboratory

5th International workshop on heavy quark production

in heavy-ion collisions 14-17 November 2012 Utrecht University

- Motivation
- J/ψ production and polarization in p+p collisions
- → J/ ψ in d+Au collisions
- J/ψ production and elliptic flow in Au+Au collisions
- Summary

Charmonia at RHIC - Motivation

- ✓ Charmonia suppression in QGP in heavy-ion collisions due to color screening
- ✓ Suppression of different states is determinate by T_C and their binding energy QGP thermometer

A .Mocsy, Eur. Phys. J. C61, 705-710 (2009)

Charmonia at RHIC - Motivation (2)

- But there are more complications:
 - Still unknown production mechanism
 - Feed-down direct J/ ψ (~60%), ψ ' (~10%), χ_C (~30%), B mesons
 - Cold Nuclear Matter (CNM) effects nuclear shadowing, Cronin effect, nuclear absorption, ...
 - Other Hot Nuclear Matter effects regeneration, ...

STAR EXPERIMENT, PID $\underline{\mathcal{J}/\psi} \rightarrow e^+e^- (BR 5.9\%)$

- ✓ Large acceptance:
 - $\bullet |\eta| < 1, 0 < \phi < 2\pi$

STAR EXPERIMENT, PID $\underline{\mathcal{J}/\psi} \rightarrow e^+e^- (BR 5.9\%)$

- Large acceptance:
 - $\bullet |\eta| < 1, 0 < \phi < 2\pi$
- TPC
 - Tracking: p_T , η , ϕ
 - ➡ dE/dx: PID

STAR EXPERIMENT, PID $\underline{\mathcal{J}/\psi} \rightarrow e^+e^-$ (BR 5.9%)

- ✓ Large acceptance:
 - $\bullet |\eta| < 1, 0 < \phi < 2\pi$

✓ **TPC**

- Tracking: p_T , η , ϕ
- ➡ dE/dx: **PID**

TOF

- Timing resolution < 100 ps
- ➡ 1/β: **PID**

STAR EXPERIMENT, PID $\underline{\mathcal{J}/\psi} \rightarrow e^+e^-$ (BR 5.9%)

- Large acceptance:
 - $\bullet |\eta| < 1, 0 < \phi < 2\pi$

TPC

- Tracking: p_T, η, φ
- ➡ dE/dx: **PID**

TOF

- Timing resolution < 100 ps
- ➡ 1/β: **PID**

STAR EXPERIMENT, PID $\underline{\mathcal{J}/\psi} \rightarrow e^+e^- (BR 5.9\%)$

Large acceptance:

• $|\eta| < 1, 0 < \phi < 2\pi$

TPC

- Tracking: p_T , η , ϕ
- ➡ dE/dx: **PID**

TOF

- ➡ Timing resolution < 100 ps</p>
- ⇒ $1/\beta$: **PID**

✓ **BEMC**

- Tower $\Delta \eta \ge \Delta \phi = 0.05 \ge 0.05$
- Energy: E/p ~ 1 (for electrons) PID
- ➡ Trigger

STAR EXPERIMENT, PID $\underline{\mathcal{J}/\psi} \rightarrow e^+e^- (BR 5.9\%)$

Large acceptance:

• $|\eta| < 1, 0 < \phi < 2\pi$

TPC

- Tracking: p_T , η , ϕ
- ➡ dE/dx: **PID**

TOF

- ➡ Timing resolution < 100 ps</p>
- ⇒ $1/\beta$: **PID**

✓ **BEMC**

- Tower $\Delta \eta \ge \Delta \phi = 0.05 \ge 0.05$
- Energy: E/p ~ 1 (for electrons) PID
- ➡ Trigger

- ✓ New low-p_T p+p baseline from 2009 year with a good significance
- $\checkmark \quad Used \ in \ new \ R_{AA} \ measurements \\ for \ d+Au \ and \ low-p_T \ Au+Au$

 Strong high-p_T signal with high S/B

J/ψ spectra in p+p collisions at 200 GeV

STAR results consistent with PHENIX results $J/\psi p_T$ range extended to 0-14 GeV/c

- ✓ prompt NLO CS+CO model describes the data
- ✓ *prompt* CEM model can reasonably well describe the p_T spectra
 - *direct* NNLO* CS model misses high-p_T part

012001 (2010) 902(R) (2009)

J/ψ polarization

Discrimination power between different \mathcal{J}/ψ production models at high- p_T

- ✓ J/ψ polarization is analyzed via the angular distribution of the decay electron pair and is measured in the helicity frame
- the angular distribution, integrated over the azimuthal angle, can be parametrized:

$$\frac{dN}{d\cos\theta} \propto 1 + \lambda \cos^2\theta$$

✓ J/ ψ polarization parameter λ is obtained by fitting $A(1+\lambda \cos^2\theta)$ function to corrected $\cos\theta$ distributions without constraints, in 3 J/ ψ p_T bins

J/ ψ polarization in p+p collisions at 200 GeV

 ✓ Polarization parameter $λ_θ$ is measured in helicity frame at |y| < 1 and 2 < p_T < ~5 GeV/c

✓ λ_{θ} is consistent with NLO⁺ CSM and COM models predictions, and with no polarization within current experimental and theoretical uncertainties

J/ψ-hadron correlations in p+p collisions at 200 GeV

$B \rightarrow J/\psi$ feed-down

- ✓ Extracted from near side J/ψ -h correlation
 - B-hadron feed-down contribution of 10-25% at 4-12 GeV/c
 - Result consistent with FONLL+CEM calculation

✓ Measurement of J/ψ in d+Au collisions provides information on CNM effects

- ✓ Good agreement with model predictions using EPS09 nPDF parametrization for the shadowing, and J/ψ nuclear absorption cross section $\sigma_{abs}J/\psi = 2.8^{+3.5}_{-2.6}$ (stat.)^{+4.0}_{-2.8} (syst.)^{+1.8}_{-1.1} (EPS09) mb obtained from a fit to the data
- ✓ STAR results consistent with PHENIX measurements

- $\checkmark Very good S/B \sim 0.15$
- ✓ Clean J/ ψ signal for low (minimum-bias data) and high p_T (high-tower trigger data)

J/ψ spectra in Au+Au collisions at 200 GeV

✓ Softer spectra than light hadron prediction at low p_T

smaller radial flow

regeneration at low p_T

 $J/\psi p_T$ range extended to 0-10 GeV/c

Tsallis Blast-Wave model: Z.Tang et al., arXiv: 1101.1912, JPG 37, 08194 (2010) STAR high-p_T: arxiv:1208.2736

J/Ψ R_{AA} vs pT in Au+Au collisions at 200 GeV

- $\checkmark ~J/\psi~$ suppression decreases with p_T across the centrality range
- ✓ At high p_T suppression for central collisions
- ✓ No suppression at high p_T in (semi-) peripheral collisions

J/Ψ R_{AA} vs N_{part} in Au+Au collisions at 200 GeV

Y.Liu et al., Phys. Lett. B, 678:72 (2009) Zhao, Rapp, Phys. Rev. C 82, 064905 (2010) STAR high-p_T : arxiv:1208.2736

- \checkmark J/ ψ suppression increases with collision centrality
- ✓ Low-p_T data agrees with two models including color screening and regeneration effects
- ✓ At high p_T Liu et al. model describes data reasonable well, while Zhao and Rapp model under-predicts R_{AA} at N_{part} > 70

14 November 2012

$J/\psi v_2$ in semi-central Au+Au collisions at 200 GeV

The J/\$v2 measurement is crucial for the test of charm quark recombination effect

✓ J/ψ v₂ is consistent with non flow at p_T > 2 GeV/c - disfavors the case when J/ψ is produced dominantly by coalescence from thermalized (anti-)charm quarks

	Models	χ²/ndf	P-value	
	Initially produced	1.8/3	6.2e-1	1
	Coalescence at freezeout	22.6/3	4.9e-5	
	Coalescence In transport	13.9/3	3.0e-3	
	Coalescence In transport	4.8/3	1.8e-1	
	Coalescence +initial mix	2.9/3	4.0e-1	.:
	Coalescence +initial mix	1.8/4	7.7e-1	. :
	Hydro T=120 w/viscosity	16.5/3	9.2e-4	
	Hydro T=165w/ viscosity	14.9/3	1.9e-03	
	Hydro T=120 w/o viscosity	191.6/3	2.7e-41	
	Hydro T=165w/o viscosity	237.3/3	0.0	

Muon Telescope Detector

- → NLO CS+CO and CEM models describe $J/\psi p_T$ spectrum in p+p
- J/ψ polarization in p+p collisions consistent with NLO⁺ CSM and COM models predictions, and with no polarization
- → B-hadron feed-down contribution 10-25% at $4 < p_T < 12$ GeV/c in p+p
- → $J/\psi R_{dAu}$ consistent with the model using EPS09+ $\sigma_{abs}^{J/\psi}$ (3 mb obtained for a fit to the data)
- → J/ψ suppression in Au+Au increases with centrality and decreases with p_T at high p_T suppression for central collisions
- → $J/\psi v_2$ measurement disfavors the case when J/ψ is produced dominantly by coalescence from thermalized (anti-)charm quarks for $p_T > 2 \text{ GeV/c}$

Thank you !

Backup

Compare to LHC - J/ ψ R_{AA} vs pt

can consistently describe the J/ψ suppression pattern.

SIAR

STAR Compare to LHC - $J/\psi R_{AA} vs N_{part}$

Stronger suppression at CMS than STAR, even in peripheral collisions $R_{CP}\sim 1/3$ for CMS, 0.45 for ATLAS and 0.5 for STAR, Similar at RHIC and LHC if take the uncertainty into account CNM and regeneration is less important at high p_T at RHIC. \rightarrow Is it true for LHC?

