

Measurement of J/ψ energy correlator in p+p collisions at $\sqrt{s} = 500$ GeV at STAR

Dandan Shen (沈丹丹) for the STAR Collaboration

(ShenDandan2024@outlook.com) Shandong University

Outline

- Motivation
 - J/ψ production mechanism
 - J/ψ energy correlator
- \succ J/ ψ energy correlator measurement
- Summary and outlook

Why J/ψ ?

- ✓ Key features of strong interaction: Asymptotic freedom and color confinement
- ✓ m_c ~1.3 GeV: $c\overline{c}$ pairs are produced in hard process

$> J/\psi$ production process is an ideal testing ground for QCD

J/ψ production mechanism

✓ Factorization of J/ ψ production: Perturbative QCD + phenomenological model (N.P.)

Models: NRQCD, CSM, CEM, ICEM et al.

Nucl. Phys. B Proc. Suppl. 222-224 (2012) 151

Polarization challenge

- > The cross section and polarization cannot be simultaneously described
- > J/ ψ production mechanism in elementary collisions is not fully understood

Towards a solution

> Experimental decomposition of the J/ψ production process (P.T. and N.P.) is very important

Towards a solution

- > Experimental decomposition of the J/ψ production process (P.T. and N.P.) is very important
- > J/ψ energy correlator a new observable for the first to direct sensitive to hadronization/confinement process

Dandan Shen@ Hot Quark 2025, Hefei

J/ψ energy correlator

 $\checkmark J/\psi$ energy correlator: average energy emitted during the hadronization process

 $p_{J/\psi}$ ~ energy emi

$$\sum(\cos\chi) = \int d\sigma \sum_{i} \frac{E_i}{M} \delta(\cos\chi - \cos\theta_i)$$

A. Chen, X. Liu, and Y. Ma, Phys. Rev. L 133(19):191901, (2024) ~energy emitted at the angle χ

 $\succ J/\psi$ as a tagged particle

Specified hadronization process $(c\overline{c} \rightarrow J/\psi + X)$

> In J/ψ rest frame at $cos\chi > 0$

an opportunity to separate of P.T process and N.P process $(cos\chi < 0)$ $(cos\chi > 0)$

- Constraining energy released/
 distribution during hadronization
- 2) Distinguishing production models

J/ψ energy correlator: shedding light on hadronization

J/ψ energy correlator

 $\checkmark J/\psi$ energy correlator: average energy emitted during the hadronization process

A. Chen, X. Liu, and Y. Ma, Phys. Rev. L 133(19):191901, (2024)

Theoretical predictions for J/ψ energy correlator in pp collision at $\sqrt{s}=7$ TeV.

> Distinguish between different models

The Solenoid Tracker At RHIC (STAR)

- ≻ TPC:
 - Tracking momentum
 - Particle identification dE/dx
- ► BEMC:
 - Trigger on high energy electron
 - Electron identification -p/E

 J/ψ signals

- > Decay channel : $J/\psi \rightarrow e^+e^-$, |y| < 1with p+p $\sqrt{s} = 500$ GeV
- \succ J/ ψ p_T range: 5-20 GeV/c
- > Mass range: [3.0, 3.2] GeV/c²

Analysis strategy

Response matrix

Response Truth \rightarrow Measured

Normalized J/ψ energy correlator

► Normalized by the J/ψ yield at the midrapidity at 5 < p_T < 20 GeV/*c*

No significant cos χ dependence in large
 cos χ range

J/ψ energy correlator distribution

- > No significant $\cos \chi$ dependence in large $\cos \chi$ range
- Significantly different J/ψ energy correlator between PYTHIA8 and data at $\cos \chi > 0$ (~7 σ difference)
- Studies on extracting J/ψ hadronization process's energy emission is on going

✓ The first J/ ψ energy correlator measurement

✓ p+p \sqrt{s} = 500 GeV:

> No significant $\cos \chi$ dependence in the large $\cos \chi$ range

> Significantly different J/ ψ energy correlator between PYTHIA8 and data

Outlook

G STAR data:

• **High-statistics** p+p datasets(2017, 2022)

	2011	2017	2022
$\sqrt{s}(\text{GeV})$	500	510	508
$L_{int} (pb^{-1})$	25	350	400
Pseudo-rapidity range	$ \eta < 1$	$ \eta < 1$	$ \eta < 1$ 2.5 < η < 4

This work is based on 2011 data

- > Toward an in-depth study of J/ψ energy correlator:
 - 1) Investigate the p_T dependence of the correlator
 - 2) Explore J/ψ energy correlator inside jets?

Outlook

STAR data:

High-statistics p+p datasets(2017, 2022)
 Thank you

	2011	2017	2022
\sqrt{s} (GeV)	500	510	508
$L_{int} (pb^{-1})$	25	350	400
Pseudo-rapidity range	$ \eta < 1$	$ \eta < 1$	$ \eta < 1$ 2.5 < η < 4

This work is based on 2011 data

- > Toward an in-depth study of J/ψ energy correlator:
 - 1) Investigate the p_T dependence of the correlator
 - 2) Explore J/ψ energy correlator inside jets?

