

J/ψ MEASUREMENTS AT STAR

Olga Hájková for STAR Collaboration

Faculty of Nuclear and Physical Sciences Czech Technical University in Prague

The 28th Winter Workshop on Nuclear Dynamics Dorado del Mar, Puerto Rico on April 7-14, 2012

Outline

- Motivation for J/ψ measurements.
- STAR detector and particle identification.
- J/ ψ production in p+p and Au+Au collisions.
- J/ ψ elliptic flow in semi-central Au+Au collisions.
- J/ψ hadron correlations.
- J/ ψ polarization in p+p collisions.
- Future of J/ψ measurements.
- Conclusions.

Quarkonia in nuclear matter

• J/ ψ could originate from different sources: direct production (production mechanism is unclear) and feeddowns from ψ ', χ , B mesons.

STAR

- With increasing temperature of nuclear matter the different quarkonium states "melt" sequentially as a function of their binding strength: the most loosely bound state disappears first, the ground state last. → QGP THERMOMETER. J/ψ at 200 GeV is expected to melt in central Au+Au collisions.
- Also other effects as cold nuclear matter effects and regeneration could influence the observed yields.

- $J/\psi v_2$ measurement is a tool to decide if $J/\psi s$ come from charm quark and antiquark coalescence.
- J/ ψ produced by pQCD \rightarrow small or zero v₂
- Recombinated $J/\psi \rightarrow \text{large } v_2$ (when charm quarks can flow)
- Comparison with model allows consider the contribution from both direct and recombinated J/ψ to the total yield.

New J. Phys. 13 (2011) 055008

STAR detector at RHIC

Large acceptance: $|\eta| < 1$, $0 < \phi < 2\pi$

Time Projection Chamber – tracking, particle identification, momentum

Time of Flight detector – particle identification

BEMC – energy deposited in towers, triggering

STAR Electron identification

- J/ψ are reconstructed via electronpositron decay channel (BR 5.9%).
- Electrons are identified from: TPC – dE/dx information, momentum ToF - particle velocity 1/β
 BEMC – E/p (energy deposited in tower)

TPC and ToF together are great tool for distinguish electrons and hadrons in low p region.Olga Hájková, WWND 20126

$\int_{STAR} J/\psi$ spectra in p+p collisions at $\sqrt{s=200 \text{GeV}}$

p+p spectrum as a baseline

Signal was obtained via e^+e^- channel. Strong signal for high p_{T_c}

• Results are consistent with other measurements.

STAR J/ ψ spectra in Au+Au collisions at $\sqrt{s_{_{NN}}}$ =200GeV

- High significance.
- Consistent with other RHIC measurements. Moreover we extend $p_{_{\rm T}}$ region up to 10GeV/c.
- Measured spectra mismatch the blast wave model predictions from light hadrons in low p_T region.
 Olga Hájková, WWND 2012

Phys. Rev. Lett. 98, 232301 (2007) JPG 37, 085104 (2010) ArXiv:1101.1912 (2011)

in Au+Au collisions

- Suppression of J/ψ in central and semi-central collisions is observed.
- R_{AA} increases with p_{T} and decreases with centrality.

STAR

$$R_{AA}(p_T) = \frac{Yield(A+A)}{Yield(p+p) \times \langle N_{coll} \rangle}$$

- At high $\boldsymbol{p}_{_{\mathrm{T}}}$ suppression is present only in central collisions.

J/ ψ elliptic flow v_2^2 - results

STAR

• $J/\psi v_2$ is consistent with zero at high- p_T .

J/ψ v₂ measurement
disfavors coalescence
from thermalized
charm quarks.

[1] V. Greco, C.M. Ko, R. Rapp, PLB 595, 202.
[2] L. Ravagli, R. Rapp, PLB 655, 126.
[3] L. Yan, P. Zhuang, N. Xu, PRL 97, 232301.
[4] X. Zhao, R. Rapp, 24th WWND, 2008.
[5] Y. Liu, N. Xu, P. Zhuang, Nucl. Phy. A, 834, 317.
[6] U. Heinz, C. Shen, priviate communication.

J/ψ – hadron correlation, B $\rightarrow J/\psi$ feed down

J/ ψ polarization in p+p collisions at $\sqrt{s}=200$ GeV

- Measurement of J/ψ polarization may help to understand its production mechanism.
- Each production model calculated with different J/ψ polarization.
- Results are consistent with COM and CSM predictions.

$\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\$

L. Ruan et al., Journal of Physics G: Nucl. Part. Phys. 36 (2009) 095001

MTD (MRPC): Multi-gap Resistive Plate Chamber. Gas detector.

With HFT together it will be possible to study $B \rightarrow J/\psi + X$ decays.

Predictions for J/ ψ : S/B=6 in d+Au and S/B=2 in central Au+Au.

Reconstruction of J/psi in central Au+Au collisions from low to high pT – excellent mass resolution.

Conclusions

- Spectra of J/ ψ measured in Au+Au collisions mismatch the blast wave model predictions from light hadrons in low p_T region.
- J/ ψ The suppression was observed in central and semi-central collisions in Au+Au collisions. The suppression decreases with p_T.
- J/ ψ v₂ in Au+Au is consistent with zero at high p_T. J/ ψ v₂ measurement disfavors coalescence from thermalized charm quarks.
- B \rightarrow J/ ψ feed down contribution was determined as 10-25 percent.
- Measurement of J/ψ polarization in mid-rapidity in p+p collisions is consistent with the COM and CSM predictions.

Thank you! :-)

STAR

Hot and cold nuclear matter effects • nuclear modification factor R_{AA} :

