

J/ ψ production in Au+Au and Cu+Cu collisions at \sqrt{s} =200 GeV at STAR

Daniel Kikoła for the STAR Collaboration

LBNL/Warsaw University of Technology

Outline

- Motivation
- Electron identification & J/ψ reconstruction
- Results

Why J/ψ ?

- Charm quarks
 - large mass → produced in the initial hard parton-parton interactions
 - excellent tool to study properties of the hot and dense matter created in A+A 200GeV collisions
- J/ψ suppression classic QGP signature T. Masui, H. Satz, Phys. Lett. B178, 416 (1986).
- low- p_{τ} J/ ψ suppression at RHIC similar to one at SPS
 - SUPPRESSION VS. regeneration? P. Braun-Munzinger and J. Stachel, Phys. Lett. B490,196 (2000); L. Grandchamp and R. Rapp, Phys. Lett. B523, 60 (2001); M. I. Gorenstein et al., Phys. Lett. B524, 265 (2002); R. L. Thews, M. Schroedter, and J. Rafelski, Phys. Rev. C63, 054905 (2001); Yan, Zhang and Xu, Phys.Rev.Lett.97, 232301 (2006);
 - Sequential melting of charmonia states? F. Karsch, D. Kharzeev and H. Satz, PLB 637, 75 (2006); B. Alessandro et al. (NA50), Eur. Phys. J. C 39 (2005) 335; H. Satz, Nucl. Phys. A (783):249-260(2007)

• ..

Why J/ψ ?

• Hot wind dissociation \rightarrow high p_{τ} direct J/ ψ suppression

(H. Liu, K. Rajagopal and U.A. Wiedemann, PRL 98, 182301(2007) and hep-ph/0607062, M. Chernicoff, J. A. Garcia, A. Guijosa hep-th/0607089)

J/ψ measurement – low $p_T J/\psi$

- Dataset:
 - Min-bias Cu+Cu (0-60%), 27M
 - Min-bias Au+Au (0-80%), 64M
 - •√s=200 GeV
- Di-electron decay channel:
 - J/ψ→e⁺e⁻ (6%)
- J/ ψ reconstruction
 - Electron identification:
 - Cu+Cu dE/dx (TPC)
 - Au+Au dE/dx (TPC) + p/E (BEMC)
 - Background estimated by event mixing

Daniel Kikoła, QM2009, Knoxv1lle

Electron identification – low $p_T J/\psi$

- Single electron p_{τ} cut:
 - Au+Au: p_τ > 1.2 GeV/c
 - Cu+Cu: p_τ > 1.1 GeV/c

Electron identification – low $p_T J/\psi$

• Single electron p_⊤ cut:

0.25

0.2

0.15

0.1

0.05

6 11:31:42 2009

Etracking x accptance X E_{PID}

- Au+Au: p_⊤ > 1.2 GeV/c
- Cu+Cu: p_τ > 1.1 GeV/c

Electron identification – low $p_T J/\psi$

- Single electron p_⊥ cut:
 - Au+Au: p_⊤ > 1.2 GeV/c
 - Cu+Cu: p_⊤ > 1.1 GeV/c

J/ψ efficiency

Au+Au – clean sample

0.25

0.2

0.15

0.1

0.05

6 11:31:42 2009

εtracking x accptance X ε_{PID}

Purity ~ 100% for p>2GeV/c•

low $p_T J/\psi$

Crystal Ball function

Gaussian core and a power-law low-end tail

• α , n - describe energy loss

$$f(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2}), & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{for } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right) \quad B = \frac{n}{|\alpha|} - |\alpha|$$

J. E. Gaiser, SLAC-R-255 (1982)

Daniel Kikoła, QM2009, Knoxville

J/ψ measurement – high $p_T J/\psi$

Daniel Kikoła, QM2009, Knoxville

$J/\psi p_T$ spectrum STAR

- STAR ability to measure J/ ψ from low- to high- p_{τ}
- Consistent with Color Evaporation calculations (R. Vogt, Private communication)

$Cu+Cu - R_{AA}$ vs. centrality

Low $p_{\tau} J/\psi$: limited statistics \rightarrow limited discrimination power

Nuclear modification factor R_{AA} vs. p_T

• Contrast to AdS/CFT+ Hydro prediction [1] T. Gunji, J. Phys.G: Nucl. Part. Phys. 35, 104137 (2008)

• Jet quenching: strong open charm suppression. [4] A. Adil and I. Vitev, Phys. Lett. B649, 139 (2007), and I. Vitev private communication; [3] S. Wicks et al., Nucl. Phys. A784, 426 (2007), and W. A. Horowitz private communication.

- Formed out of medium? Affected by heavy quark/gluon energy loss
- Decay from other particles? [2] R. Rapp, X. Zhao, nucl-th/0806.1239

Disentangle contributions via Correlations

1) $g + g \longrightarrow \chi + g$ $\downarrow J/\psi + \gamma$ No near side correlation 2) $g + g \longrightarrow b + \overline{b}$ $\downarrow B_{hadron} + X$ $\downarrow J/\psi + X$

Strong near side correlation

 J/ψ -hadron correlation can shed light on different contribution to J/ψ production

J/ψ - hadron correlations - constrain bottom yields

- No significant near side J/ψ -hadron azimuthal angle correlation
- Constrain B meson's contribution to J/ψ yield
- Correlations show low B contribution $(13 \pm 5)\%$
- Can be used to further constrain B yields

Summary and outlook

- No J/ ψ suppression in high-p_T region in Cu+Cu 200GeV
- Prominent J/ ψ signal in Au+Au and Cu+Cu
- Outlook
 - New STAR J/ ψ measurements in d+Au 200GeV: posters by Zebo Tang (high-p_T J/ ψ) and Chris Powell (low-p_T J/ ψ)
 - TOF + DAQ1000 + EMC = dramatic improvement of low- $p_{T} J/\psi$

 \rightarrow precise J/ ψ v₂ measurement

Backup

high $p_T J/\psi$

Daniel Kikoła, QM2009, Knoxville

J/ψ - hadron correlation in p+p

Daniel Kikoła, QM2009, I

TOF + BEMC + DAQ1000

 R_{AA} vs p_{T}

