¹ System size and collision energy dependences of J/ψ production at ² RHIC from the STAR experiment

Qian Yang, Ziyue Zhang, Yu-Ming Liu, Yan Wang and Kaifeng Shen

3

4

5

Abstract

Charm quarks are an important probe to study the properties of the quark-gluon plasma (QGP) created in heavy-ion collisions. The J/ψ anisotropy flow, v_2 , gives 7 information about the charm quark thermalization and J/ψ regeneration effect. 8 On the other hand, J/ψ nuclear modification factor in p+Au collisions, R_{pA} , can 9 be used to probe cold nuclear matter effects, while in Au+Au collisions R_{AA} is 10 sensitive to the hot nuclear matter effect in QGP. Measurements of $J/\psi v_2$ and 11 R_{AA} in different collision systems and energies can help to better understand the 12 J/ψ production and the QGP properties. The STAR isobar program (Ru+Ru and 13 Zr+Zr collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$) provides a unique opportunity to study the 14 J/ψ regeneration and dissociation contributions in a modest size system between 15 p+Au and central Au+Au system. 16

In this talk, the $J/\psi v_2$ as a function of transverse momentum and centrality using high statistics isobar collision data will be shown. Additionally, the J/ψ nuclear modification factors will be presented in p+Au, Ru+Ru and Zr+Zr at $\sqrt{s_{NN}} = 200$ GeV as well as in Au+Au $\sqrt{s_{NN}} = 54.4$ GeV.