K^{*0} and ϕ production in Au+Au collisions at RHIC

2

1

Aswini, Yan Huang, Weiguang Yuan (for the STAR collaboration)

Heavy-ion collisions provide a unique opportunity to study the properties of the QCD matter 3 at varying temperatures and densities. For the K^{*0} resonance which has a short lifetime 4 (4.16 fm/c), its yield may deviate from thermal model expectations due to hadronic processes 5 (re-scattering and re-generation) that occur after the chemical freeze-out. On the other hand, 6 the ϕ resonance, which has a longer lifetime (46 fm/c), has relatively small hadronic interaction 7 cross section. Therefore, it is less susceptible to final-state effects and can be used to study 8 the early evolution of the system. In addition, coalescence model calculations indicate that 9 the Ω/ϕ yield ratio is sensitive to strange quark thermodynamic properties since both the 10 Ω hyperons and ϕ mesons have relatively small hadronic interaction cross sections and their 11 vields suffer minimal distortion from decay feed-down. Therefore, measuring the Ω/ϕ vield 12 ratio as a function of collision energy can potentially probe the onset of deconfinement. 13 In this talk, we will present measurements of K^{*0} at $\sqrt{s_{NN}} = 19.6$, 14.6 and 7.7 GeV 14 and ϕ at $\sqrt{s_{NN}} = 27$, 19.6, 14.6 and 7.7 GeV using high statistics STAR BES-II data. 15 Transverse momentum spectra of K^{*0} and ϕ will be presented in intervals of rapidity and 16 centrality, and resonance to non-resonance particle ratios (ϕ/K and K^{*0}/K) will be shown as 17 a function of centrality for various collision energies. In addition, rapidity dependence of K^{*0} 18 and ϕ production and the elliptic flow of K^{*0} will be shown. Physics implications of these 19

20 measurements will also be discussed.