Directed flow of identified hadrons in Au+Au collisions with the STAR experiment at RHIC

Kishora Nayak

(for the STAR Collaboration)

Institute of Particle Physics, Central China Normal University, China

Outline

- **Motivation**
- The STAR detectors
- Results
 - Directed flow (v₁) of identified hadrons
 - > AMPT, Thermal model comparison
 - Testing Coalescence Sum Rule (NCQ scaling)
- Summary

The STAR Detectors

Uniform Acceptance

• Full Azimuthal Coverage

• Excellent Particle Identification Capability

- 1st-order Event Plane Detectors:
- 19.6, 54.4 GeV: Beam-Beam Counter, BBC [3.3<|η|<5.0]</p>
- ▶ 27 GeV: Event Plane Detector, EPD [2.1<lηl<5.1]

• Systematic details

DCA, nσ, TPC hits, TPC hits/Maximum hits: **Total systematic is** ~9-17%

3

Motivation

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_n)]$$

Directed flow, $v_1 = \langle \cos[(\phi - \Psi_1)] \rangle$

QCD Phase Transition

• Signature of 1st order phase transition $\rightarrow v_1$ slope (dv₁/dy) of net-p: double sign change

Particle Production Mechanism

- Coalescence sum rule: NCQ scaling
 - $\rightarrow p_T$ dependent v_1 of identified hadrons

Initial Conditions

Understanding initial state

 \rightarrow Energy and centrality dependence of v₁ of

identified hadrons (π , K, and \bar{p})

Rapidity dependence of v₁: 27 GeV

STAR

✓ Anti-flow (negative slope) for measured hadrons in all centralities in both cases (low- & high- p_T)
✓ Exception: Proton for 0-10% centrality, high- p_T is having normal flow (positive slope)

Centrality dependence of dv₁/dy: 27 GeV

STAR

✓ Slope difference between
 low- and high-p_T is more
 prominent for peripheral
 collisions

 \mathbf{V} Monotonic (π^+ , π^- , K⁺ and p) and non-monotonic (K⁻ and \overline{p}) dependence with $\langle N_{part} \rangle$

Anti flow: Peripheral collisions show more anti-flow than central collisions

Vormal flow: Proton for 0-5% and 5-10% centralities for high- p_{T}

STAR: Phys. Rev. Lett. 120,062301 (2018)

p_T & centrality dependence of v₁: 27 GeV

 \mathbf{V} Strong centrality dependence for π^+ , K⁺, p and π^- unlike K⁻ and \overline{P}

 \blacksquare Sign change for central (0-10%) collisions at high- p_{\top}

STAR

Model comparison: 27 GeV

* Thermal Model : $v_1(p_T) = \frac{p_T \beta_a}{2T} \left(1 - \frac{m\beta_0}{p_T} \frac{I_1(\zeta)}{I_0(\zeta)}\right); \ \zeta = \frac{\beta_0 p_T}{T}$

 \rightarrow It predicts positive v₁ at all p_T for pion, kaon and proton

Explanation of negative v₁: Interplay of radial expansion of thermalized source and the directed flow →Particles moves in opposite to flow direction

Model comparison: 54.4 GeV

* Thermal Model :
$$v_1(p_T) = \frac{p_T \beta_a}{2T} \left(1 - \frac{m\beta_0}{p_T} \frac{I_1(\zeta)}{I_0(\zeta)}\right); \ \zeta = \frac{\beta_0 p_T}{T}$$

 \rightarrow It predicts positive v₁ at all p_T for pion, kaon and proton

Explanation of negative v₁: Interplay of radial expansion of thermalized source and the directed flow →Particles moves in opposite to flow direction

v₁ vs p_T: Energy dependence

 \square Mass dependence for particles (π^+ , K⁺, p) at all observed energies

 \mathbf{V} Baryon-meson separation for anti-particles π^{-} , K⁻ and \bar{P}

R.J.M. Snellings *et al.* Phys. Rev. Lett. 84, 2803-2805 (2000)

Testing of coalescence sum rule

 \mathbf{M} Number of Constituent Quark (NCQ) scaling holds best at low m_T for \bar{p} , K^- and π^- in all three energies

→ Quark Coalescence

Centrality dependence of NCQ scaling

STAR

☑ NCQ scaling is observed at low- m_T for produced hadrons (\bar{p} and K^-) in all measured centralities at $\sqrt{s_{NN}} = 27$ and 54.4 GeV

• Stronger p_T dependence for heavier hadrons. The produced hadrons show better NCQ scaling → Coalescence is important for produced hadrons

 \bigcirc v₁ slope becomes more negative as $\sqrt{s_{NN}}$ decreases, within 54.4 to 19.6 GeV

- \rightarrow Shadowing (or absorptions) becomes more important in the system with lower $\sqrt{s_{NN}}$
- \rightarrow Strong centrality dependence of v₁ slope of hadrons (except produced hadrons)
- \rightarrow Slope difference between low- & high- p_T is more prominent for peripheral collisions

 \bigcirc AMPT-Default model explains the data reasonably well except for \bar{P}

- → Possibly because of partial incorporation of the finite nuclear thickness in AMPT-Default
- \odot AMPT-SM well predicts the sign change for produced hadrons like K⁻ and \bar{P} .
 - \rightarrow Finite nuclear thickness is yet to be included in AMPT-SM.

Thank you!

Backup

p_T dependence of v₁: 27 GeV

 $\ensuremath{\ensuremath{\boxtimes}}$ Larger difference between $p~and~\bar{p}$ compare to $\ensuremath{\mathsf{K}}\xspace^+$ and $\ensuremath{\mathsf{K}}\xspace^-$

Might be due to transported quarks contribution

 $\ensuremath{\boxtimes} \pi^+$ and π^- are consistent and it is similar to p_{T} -integrated