Inclusive A_{LL} Measurements at STAR

Adam Kocoloski Massachusetts Institute of Technology for the **STAR** Collaboration

LLWI 2009

- Introduction
- STAR detector
- Review of Results
- Plans for the Future

Asymmetries Access Spin Degrees of Freedom

- Polarized DIS determines quark spin contributes ~30% of proton's spin
- Polarized gluon distribution not as well constrained
- Global analyses including pDIS data have large uncertainties ⇒ need direct access to gluons!

Asymmetries Access Spin Degrees of Freedom

Take the asymmetry of proton helicity configurations

In the case of inclusive jets or hadrons:

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\sum_{a,b,c} \Delta f_a \otimes \Delta f_b \otimes d\hat{\sigma}^{f_a f_b \to f_c X} \cdot \hat{a}_{LL}^{f_a f_b \to f_c X} \otimes D_{f_c}^h}{\sum_{a,b,c} f_a \otimes f_b \otimes d\hat{\sigma}^{f_a f_b \to f_c X} \otimes D_{f_c}^h}$$

In simplified terms: $A_{LL} \approx a_{gg} \Delta g^2 + a_{qg} \Delta q \Delta g + a_{qq} \Delta q \Delta q'$

Inclusive Jet production (200GeV: Solid line / 500GeV: Dashed line)

At RHIC kinematics, gg and qg scattering dominate

Solenoidal Tracker at RHIC

Inclusive A_{LL} Measurements

- Reconstruct a piece of final state without considering full event structure
- Larger cross section in our acceptance than correlation or exclusive measurements
- Integrate over multiple subprocesses
- Limited knowledge of initial parton kinematics

Jets

No fragmentation functions

 Jet definition complicates relation between theory and experiment

Jet Energy Scale can be a significant uncertainty

Hadrons

Need a convolution with FFs

But this can enable some subprocess selectivity

Less uncertainty in pT measurement

2003/04 Inclusive Jet Results

• First jet cross section and longitudinal spin result from STAR

• 2005: Δg over 0.02 < x < 0.2 smaller than GRSV-STD

 $\Delta G(Q^2 = 1 GeV^2) \approx 1.8$ $\Delta G(Q^2 = 1 GeV^2) \approx 0.4$ $\Delta G(Q^2 = 1 GeV^2) \approx 1.0$

2005: Δg over 0.02 < x < 0.2 smaller than GRSV-STD

2006: full BEMC, IOx better statistics in some pt

bins

2005: Δg over 0.02 < x < 0.2 smaller than GRSV-STD

2006: full BEMC, IOx better statistics in some pt

bins

- 2005: Δg over 0.02 < x < 0.2 smaller than GRSV-STD
- 2006: full BEMC, I0x better statistics in some pT bins
- Confidence levels calculated using available fits and 05+06 data
- Many PDFs with large ΔG ruled out
- Exception: GS Set C, which has $\Delta G \sim 1.0$ but a node in the x range sampled by inclusive jets

Impact on Global Fits

- STAR inclusive jets provide a strong constraint on Δg over 0.05 < x < 0.2
- Data favor a small gluon polarization over this limited range
- Future measurements must increase the sampled x range and map the x dependence of Δg

2006 $\pi^0 A_{LL}$ (mid-rapidity)

- Pions reconstructed using two photon decay channel in BEMC
- Run 6 results significantly more precise than previous measurements
- GRSV-MAX ruled out

2006 $\pi^0 A_{LL}$ (forward rapidity)

- Probe low-x region where $\Delta g(x)$ is generally predicted to be smaller
- Important baseline measurements for STAR inclusive γ and γ -jet program

$2006~\pi^{+/-}\,A_{LL}$

- EM trigger used to select events; π^{+/-} in trigger jet biased towards soft fragmentation
- Require jet, pion back-to-back in φ
- Plot asymmetry versus z = p_T(π) / p_T(trigger jet) to cleanly isolate favored fragmentation

The Future

- x-dependence of Δg : correlation measurements
 - Di-Jet/Hadron production: all three (LO) QCDtype subprocesses contribute
 - γ -jet: One dominant underlying (LO) process with a large partonic a_{LL} at forward rapidity
 - Small cross section for γ-jet: efficient reconstruction and background subtraction are essential
 - Both measurements can be readily incorporated into a global analysis
- increase sampled x range
 - correlations over wide rapidity range
 - 500 GeV data (x $\approx 2 \text{ pT}/\sqrt{s}$)

Inclusive ALL measurements at STAR – Adam Kocoloski

$$\frac{M}{\sqrt{s}} = \sqrt{x_1 x_2} \qquad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$

$$x_{1(2)} = \frac{1}{\sqrt{s}} \left(p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right)$$

12

The Future

- x-dependence of Δg : correlation measurements
 - Di-Jet/Hadron production: all three (LO) QCDtype subprocesses contribute
 - γ-jet: One dominant underlying (LO) process with a large partonic a_{LL} at forward rapidity
 - Small cross section for γ-jet: efficient reconstruction and background subtraction are essential
 - Both measurements can be readily incorporated into a global analysis
- increase sampled x range
 - correlations over wide rapidity range
 - 500 GeV data (x $\approx 2 \text{ pt}/\sqrt{s}$)

Inclusive ALL measurements at STAR – Adam Kocoloski

$$\frac{M}{\sqrt{s}} = \sqrt{x_1 x_2} \qquad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$

$$x_{1(2)} = \frac{1}{\sqrt{s}} \left(p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right)$$

The Future

- x-dependence of Δg : correlation measurements
 - Di-Jet/Hadron production: all three (LO) QCDtype subprocesses contribute
 - γ-jet: One dominant underlying (LO) process with a large partonic a_{LL} at forward rapidity
 - Small cross section for γ-jet: efficient reconstruction and background subtraction are essential
 - Both measurements can be readily incorporated into a global analysis
- increase sampled x range
 - correlations over wide rapidity range
 - 500 GeV data (x $\approx 2 \text{ pt}/\sqrt{s}$)

Inclusive ALL measurements at STAR – Adam Kocoloski

$$\frac{M}{\sqrt{s}} = \sqrt{x_1 x_2} \qquad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$

$$x_{1(2)} = \frac{1}{\sqrt{s}} \left(p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right)$$

Summary

- STAR has a robust program of inclusive A_{LL} measurements at $\sqrt{s} = 200$ GeV
- These measurements have had a significant impact on our understanding of Δg
- Correlation measurements will allow STAR to better constrain parton kinematics and map the x-dependence of Δg
- RHIC 500 GeV running combined with STAR's wide rapidity coverage enable asymmetries that will sample the gluon polarization at small x

Backup

2005 Pion Invariant Yields

- Good agreement between data and NLO calculations over several decades
- Charged pion cross section made possible by advanced TPC calibrations (arXiv:0807.4303-physics)

