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QCD Matter

The image to the right is the 
proposed phase diagram for 
QCD matter.

Higher moments of 
multiplicity distributions (such 
as net-proton kurtosis, κ) 
are current candidates for 
markers of the QCD critical 
point (CP).
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Net-Proton 
Kurtosis

In an event, baryon number is 
conserved. As a proxy for all 
baryons, we often use 
net-protons (which is protons - 
antiprotons).

UrQMD is a simulation with no 
CP dynamics. It is expected that κ 
behaves monotonically in the 
absence of a CP, thus 
non-monotonic behaviour in κ is a 
marker for the QCD CP.
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Phys. Rev. Lett. 112.032302

STAR Beam Energy Scan 
(BES) range for QCD 
critical point search
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Autocorrelation 
Effect (ACE)

The image shows ACE using UrQMD 
with both κ and centrality determined 
at mid-η. (Note: UrQMD does not have 
critical phenomenon built in).

ACE will suppress cumulant 
magnitudes.

Using a forward η detector, such as the 
STAR Event Plane Detector (EPD), 
would avoid the ACE.
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Truncated nMIP

EPD measures nMIP (ζ), which is subject to Landau 
fluctuations (UrQMD ζ generated via convoluted Landau 

distributions; see Rachael Botsford’s talk for a more 

detailed discussion of ζ).
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Using truncated nMIP (ζ’), smooths out 
the distribution.
ζ < 0.3 → ζ’= 0*,        ζ > 2.0 → ζ’= 2.0

*For data; not necessary in UrQMD

𝜮ζ

𝜮ζ
’

PRC103.044902
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Spectator Protons

6

Spectator protons, not seen in the η range 
of the EPD at √s

NN
 = 200 GeV, enter the  η 

range of the EPD at lower √s
NN

(such as those of STAR BES).

As can be seen, spectator protons do not 
intrude into acceptances for midrapidity 
centrality metrics such as STAR RefMult3 
(charged K and 𝞹 at |𝞰| < 1).

PRC103.044902
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EPD Linear Weights

ζ’ is fit to a global observable G
i
 (b, in our case) 

via linear weighting (W
r
) of each ring (C

r
).
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Weighting Schemes for EPD Centrality

Weights for EPD rings are:

● Cannot be determined by theory
○ No robust model exists with complete 

spectator/participant physics in forward 
region at BES energies

○ UrQMD does not match data in the forward 
region at lower BES energies

● Linear weighting is a method, but we could 

use:
○ Outer EPD ring sums with Glauber Monte 

Carlo (GMC) fit
○ Logarithmic weights
○ Etc.

We simply need robust variability. Thus we are 

turning to Machine Learning.

● Very good at varying weights
● Can leverage ring weights dynamically
● Easy to implement and optimise
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Multi-layer Perceptron Model (MLP)

● Input layer -> hidden layers -> output 
layer

● Each layer hands off its data to every 
perceptron (neuron) in the next layer

● Layers add weights and biases
● 32 inputs (rings) -> 32 perceptrons -> 

128 perceptrons -> 1 output

9

Input Hidden Output

Note: 
Convolution also 
employed prior 
to first hidden 
layer.
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Centrality Resolution in Lower BES Energy
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Resolution is determined 
by dividing the variance 
of the b distribution from 
a centrality metric X in a 
certain bin i by the 
variance of the b 
distribution in the same 
bin as determined by b 
itself.

RefMult3

EPD Sum

EPD Lin Weight

EPD ML

UrQMD 

X trained on 
global 

observable: 
b
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STAR Data

● No access to b in data
○ Another global observable must be used
○ RefMult3 selected as global observable

■ Charged particles (less 
protons/antiprotons) in range |𝞰|<=1.0

● Spectator protons affect correlations; data 

mirrors UrQMD, but not exactly.
○ UrQMD has no critical phenomenon
○ The model used was a non GEANT model (not all 

factors simulated)
○ An exact correlation between simulation and 

data should not be expected 
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UrQMD
√s

NN
=14.5 GeV

✰STAR✰
√s

NN
 = 14.5 GeV
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Centrality Resolution in Lower BES Energy
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Resolution is determined 
by dividing the variance 
of the b distribution from 
a centrality metric X in a 
certain bin i by the 
variance of the b 
distribution in the same 
bin as determined by b 
itself.

RefMult3

EPD Sum

EPD Lin Weight

EPD ML

UrQMD 

X trained on 
global 

observable: 
RefMult3
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Summary

● A simple sum of the particles in the EPD acceptance range at low energies nets 
a poor centrality resolution due to the spectator protons.

● This resolution, however, can be recovered by a nuanced, differential analysis.
● Study is ongoing performing EPD ring scaling on STAR data. Possible methods:
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Use outer EPD and map to GMC
Pro:

● Well tested methodology
Con:

● Loss of resolution from using ~½ of the 
detector

Map EPD to RefMult3
Pro:

● RefMult3 is robust and well understood
Con:

● Further removed from b (EPD -> RefMult3 -> b)
● High level mapping may reintroduce ACE

Open to new ideas for a self-referential centrality from EPD:
● Unsupervised clustering or ... ?
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Thank you for your attention!
Questions?
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Input

Hidden

Output
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Backup Slides
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Pseudorapidity (η)

In the STAR detector, the Time 

Projection Chamber (TPC) is at |η| ≤ 1 

and the Event Plane Detector (EPD) is 

at  2.1 ≤ |η| ≤ 5.1.

TPC range will be called mid-rapidity 

and EPD range forward rapidity.

17Annika Ewigleben, APS Meeting, April 2017
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EPD: Charged Particles

The EPD is a forward detector made of scintillator with tiles of wavelength shifting 
fibers which capture emitted photons from charged particles.
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Image: J. Adams, A. Ewigleben, S. Garrett, W. He, T. Huang, P. M. Jacobs, X. Ju, M. A. Lisa, M. Lomnitz, R. Pak, et al., “The star event plane detector,” 
Nuclear Instru-ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, (2020)
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Findings
We can see Xζ’

 has a flat 
correlation with b in 7.7 
and 11.5 GeV.

14.5 and 19.6 GeV are a 
little better, but a simple 
sum is clearly a poor 
metric given the spectator 
protons.
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Linear Weights
X𝞯’LW

  must be changed for data as there is no 

access to b.

● Data is 14.5 GeV STAR data
○ ~1400 runs
○ ~5M events

● Global observable: RefMult3
● Weights are necessary because of 

spectators
● Any global observable is admissible (not 

just b or RefMult3)
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✰STAR✰
√s

NN
 = 14.5 GeV

EPD Ring Weights

UrQMD 

✰STAR✰
√s

NN
 = 14.5 GeV
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Activation Functions

Rectified Linear Unit (ReLU)

Swish
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Mish

https://arxiv.org/vc/arxiv/papers/1908/1908.08681v1.pdf
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Correlation with RefMult3
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P=0.848

P=0.929

P=0.962

P=0.973 P=0.971 P=0.972

✰STAR✰
√s

NN
 = 14.5 GeV

Linear
Weight
Method

ML, ReLu
Activation

ML, Swish
Activation

ML, Mish
Activation
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Distributions
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√s

NN
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