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QCD Matter

NuclPhysA 2017.05.116
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The image to the right is the 250 [&
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Higher moments of
multiplicity distributions (such
as net-proton kurtosis, K)
are current candidates for
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Net-Proton
Kurtosis

In an event, baryon number is
conserved. As a proxy for all
baryons, we often use
net-protons (which is protons -
antiprotons).

UrQMD is a simulation with no
CP dynamics. It is expected that k
behaves monotonically in the
absence of a CP, thus
non-monotonic behaviour inKis a
marker for the QCD CP.
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STAR Beam Energy Scan
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Autocorrelation
Effect (ACE)

The image shows ACE using UrQMD
with both K and centrality determined
at mid-n. (Note: UrQMD does not have
critical phenomenon built in).

ACE will suppress cumulant
magnitudes.

Using a forward n detector, such as the
STAR Event Plane Detector (EPD),
would avoid the ACE.
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Truncated nMIP SO

UrQMD is =19.6 GeV
Eegtrality d&termined by:

3000 : 10
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EPD measures nMIP (), which is subject to Landau Using truncated nMIP (;’), smooths out
fluctuations (UrQMD  generated via convoluted Landau the distribution.
distributions; see Rachael Botsford’s talk for a more {<0.3-7=0" {>20-0=20

detailed discussion of Q).
*For data; not necessary in UrQMD
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Spectator Protons PRC103.044902

Spectator protons, not seenin the n range
of the EPD at Vs, = 200 GeV, enter the n
range of the EPD at lower ‘/SNN

(such as those of STAR BES).

As can be seen, spectator protons do not
intrude into acceptances for midrapidity
centrality metrics such as STAR RefMult3
(charged Kand m at |n| < 1).




EPD Linear Weights

¢’ is fit to a global observable G, (b, in our case)

via linear weighting (W ) of each ring (C ).

16

X = Z IV, C,- + Urbz as
r=1
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Weighting Schemes for EPD Centrality

Weights for EPD rings are: We simply need robust variability. Thus we are
turning to Machine Learning.
e Cannot be determined by theory
o  Norobust model exists with complete e Verygood at varying weights
spectator/participant physics in forward e Can leverage ring weights dynamically

region at BES energies e Easytoimplement and optimise
o UrQMD does not match data in the forward y P P

region at lower BES energies
e Linear weighting is a method, but we could
use:

o  Outer EPD ring sums with Glauber Monte
Carlo (GMC) fit

o  Logarithmic weights

o Etc.



Multi-layer Perceptron Model (MLP)

Input layer -> hidden layers -> output
layer

Each layer hands off its data to every
perceptron (neuron) in the next layer
Layers add weights and biases

32 inputs (rings) -> 32 perceptrons ->
128 perceptrons -> 1 output

Input

Kagamaster

- QOutput

Note:
Convolution also
employed prior
to first hidden
layer.
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Centrality Resolution in Lower BES Energy

Resolution for 14.5 GeV
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Centrality

- Xtrainedon:

global
- observable: .
b .
&  RefMuit3
wafp—  EPD Sum
_‘_ EPD Lin Weight
+ EPD ML

Resolution is determined
by dividing the variance
of the b distribution from
a centrality metric X in a
certain bini by the
variance of the b
distribution in the same
bin as determined by b
itself.
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STAR Data

‘/SNN=14'5 GeV

UrQMD

No access to b indata
Another global observable must be used
RefMult3 selected as global observable

o

O

Spectator protons affect correlations; data

m  Charged particles (less

protons/antiprotons) in range |n|<=1.0
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Ringl Ring2
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RefMult3

mirrors UrQMD, but not exactly.
UrQMD has no critical phenomenon
The model used was a non GEANT model (not all

o

O

factors simulated)

An exact correlation between simulation and

data should not be expected
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Centrality Resolution in Lower BES Energy

Resolution for 14.5 GeV
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Centrality

. X trainedon:

. global

- observable: :
RefMult3

RefMult3

-o-
=g

_‘_ EPD Lin Weight
+

EPD Sum

EPD ML

Resolution is determined
by dividing the variance
of the b distribution from
a centrality metric X in a
certain bini by the
variance of the b
distribution in the same
bin as determined by b
itself.
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Summary

e Asimple sum of the particles in the EPD acceptance range at low energies nets
a poor centrality resolution due to the spectator protons.
This resolution, however, can be recovered by a nuanced, differential analysis.
Study is ongoing performing EPD ring scaling on STAR data. Possible methods:

. Use outer EPD and map to GMC . i Map EPD to RefMult3

- Pro: .| Pro:

. o Well tested methodology . . e RefMult3isrobust and well understood

. Con: i Con: :

. e Loss of resolution from using ~% of the . e Further removed from b (EPD -> RefMult3->b)
detector . e Highlevel mapping may reintroduce ACE :

Open to new ideas for a self-referential centrality from EPD:

e Unsupervised clusteringor...? 13
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Thank you for your attention!
Questions?

| Hidden
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Pseudorapidity (n)

In the STAR detector, the Time
Projection Chamber (TPC)isat|n| <1
and the Event Plane Detector (EPD) is
at 2.1<|n|=<5.1.

TPC range will be called mid-rapidity
and EPD range forward rapidity.

n= — ln(tan g)

7.3m

Annika Ewigleben, APS Meeting, April 2017
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EPD: Charged Particles

The EPD is a forward detector made of scintillator with tiles of wavelength shifting
fibers which capture emitted photons from charged particles.

24 tiles in Ring 4 of East Wheel 24 tiles in Ring 14 of East Wheel
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Image: J. Adams, A. Ewigleben, S. Garrett, W. He, T. Huang, P. M. Jacobs, X. Ju, M. A. Lisa, M. Lomnitz, R. Pak, et al., “The star event plane detector,”
Nuclear Instru-ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, (2020)
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Linear Weights

X(,LW must be changed for data as there is no
accessto b.

e Datais 14.5 GeV STAR data
o ~1400 runs
o ~5M events

e Global observable: RefMult3

e Weights are necessary because of
spectators

e Anyglobal observable is admissible (not
just b or RefMult3)
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EPD Ring Weights Vs =14.5GeV
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Activation Functions iy

—— SoftPlus
—e— Bent Identity

Rectified Linear Unit (ReLU) .
flz) = {(l) x>0

o <0

Swish

Mish
f(z) =ax-tanh ({ (z))

((2) = log (1 +¢7) e e e e S

https://arxiv.org/vc/arxiv/papers/1908/1908.08681v1.pdf
21
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Correlation with RefMult3  v,-1456ev
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Distributions
Reference Distributions
1 refmult
rnng_sum
10 [ ring_sum_outer
[] pred_linear
] pred_relu
- 1 pred_swish
pred_mish
318
. YeSTARYx 5
104 Vs, = 14.5 GeV
10° 4 | | | I Il |
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