Photon-induced J/ψ production and polarization effects in isobar collisions at STAR

Zengzhi Li² and Kaiyang Wang¹

¹University of Science and Technology of China ²South China Normal University

Abstract

In relativistic heavy-ion collisions, J/ψ photoproduction serves as a sensitive 1 probe for studying the gluonic structure in heavy nuclei. Differential measure-2 ments of photon-induced J/ψ production provide important constraints on gluon distribution functions and sub-nucleonic shape fluctuations. The linear polarizaл tion of photons involved in these processes enables imaging of the nucleus via spin 5 interference effect in vector meson photoproduction, which can be quantified by measuring the azimuthal angular modulation between the J/ψ momentum and its 7 decay daughters' momenta. Moreover, the decay daughters of these vector mesons inherit polarization of the photons, which could be used to access the initial collision q geometry. Thus, measurement of differential cross sections of J/ψ photoproduc-10 tion and the azimuthal anisotropy of their decay daughters offer a novel and direct 11 probe into both the gluonic structure and the initial collision geometry. 12

In this contribution, we will present the differential cross sections of photon-13 induced coherent J/ψ in Ru+Ru and Zr+Zr ultra-peripheral collisions (UPCs) at 14 $\sqrt{s_{NN}} = 200$ GeV. These cross-section measurements will also be compared with 15 existing d+Au and Au+Au data to investigate system size dependencies. Fur-16 thermore, we will report the azimuthal angular modulation measurements of the 17 photon-induced J/ψ in isobaric UPCs. Finally, we will present the measurements 18 of the azimuthal anisotropy of electrons decayed from photon-induced J/ψ with 19 respect to the event plane in non-central collisions from the same collision sys-20 tems. Physics implications of these results will be discussed together with model 21 comparisons. 22