Recent results of Υ production measured with the STAR experiment

Leszek Kosarzewski for the STAR Collaboration, kosarles@fjfi.cvut.cz, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

52

53

1 INTRODUCTION

Upsilon (Υ) mesons are a good tool to study the na-54 2 ture of strong interaction and properties of quark-gluon plasma (QGP), created in ultra relativistic heavy-ion collisions [1]. Measurements of the production of these 5 mesons in p+p collisions provide information about the quarkonium production mechanism. Such measurements serve also as a reference for studies of QGP, where Υ and J/ψ mesons are expected to dissociate q at high temperatures [2] resulting in suppressed yields 10 observed in heavy-ion collisions. This effect is due to 11 Debye-like screening of color charges, which causes the 12 bound states to dissociate. The level of suppression is 13 estimated by measuring the nuclear modification fac-14 tor: 15

$$R_{\rm AA} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{\mathrm{d}^2 N_{A+A} / \mathrm{d} p_T \mathrm{d} y}{\mathrm{d}^2 N_{n+n} / \mathrm{d} p_T \mathrm{d} y} \tag{1}$$

where $\langle N_{\rm coll} \rangle$ is the mean number of nu-16 cleon+nucleon collisions and the numerator and the 17 denominator are differential yields vs. transverse mo-18 mentum (p_T) and rapidity (y) in A+A and p+p col-19 lisions, respectively. Moreover, each of $\Upsilon(nS)$ has a 20 different binding energy and dissociates at a different 21 57 temperature, leading to a sequential suppression [3]. 22 58 The measured Υ yields are also affected by feed-down 23 59 contributions from heavier states, such as $\Upsilon(nS) \rightarrow$ 24 60 $\Upsilon(1S)\pi^+\pi^-, \chi_{bJ}(nS) \to \Upsilon(1S)\gamma$ and similar decays. 25 61 Furthermore, in A+A collisons there may be a 26 62 contribution from a number of Cold Nuclear Matter 27 (CNM) effects, which are unrelated to QGP. These ef-28 fects include absorption in nucleus, comover interac-20 tions [4], coherent partonic energy loss [5], and modifi-30 cation of the nuclear parton distribution functions with 31 respect to those of free nucleons. The last one shows 32 shadowing and anti-shadowing effects [6], which could 33 decrease or increase the parton (gluon) densities. All 34 the above effects can be studied using p+A or d+A35 collisons. 36

Finally, studies of normalized yield $\Upsilon/\langle \Upsilon \rangle$ dependence on normalized charged particle multiplicity $N_{ch}/\langle N_{ch} \rangle$ allow to investigate interplay between hard and soft processes in high- N_{ch} p+p events. These studies have been performed by the CMS experiment at the LHC [7].

43 PRODUCTION IN P+P COLLISIONS

The STAR experiment has measured Υ production 44 cross section in p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ vs. 45 rapidity (y) and $\sqrt{s} = 500 \text{ GeV}$ vs. p_T and y. Fig-46 ure 1 shows the $\Upsilon(nS)$ rapidity-differential cross sec-63 47 tion in p+p collisions at $\sqrt{s} = 500 \text{ GeV}$, where the 48 newly measured $\Upsilon(2S)$ and $\Upsilon(3S)$ cross sections are 54 49 presented along with $\Upsilon(1S)$. The $\Upsilon(1S)$ data are well 65 50 described by Color Evaporation Model (CEM) [8] cal- 66 51

culations for inclusive $\Upsilon(1S)$. The same data are overestimated by a CGC+NRQCD [9, 10] calculation for directly produced $\Upsilon(1S)$.

Fig. 1. $\Upsilon(nS)$ cross sections vs. rapidity (y) in p+p collisions at $\sqrt{s} = 500$ GeV, compared to model predictions for $\Upsilon(1S)$ [8, 9, 10].

The dependence of normalized $\Upsilon(1S)/\langle \Upsilon(1S) \rangle$ yield on normalized $N_{ch}/\langle N_{ch} \rangle$ was measured by STAR in p+p collisions at $\sqrt{s} = 500$ GeV. This is presented in Fig. 2 and compared to STAR J/ψ results at $\sqrt{s} = 200$ GeV [11], CMS $\Upsilon(1S)$ data [7], and AL-ICE data for J/ψ [12]. Both the Υ and J/ψ data follow similar trends at RHIC and the LHC, despite a large difference in the collision energies.

Fig. 2. Normalized yield $\Upsilon(1S)/\langle \Upsilon(1S) \rangle$ vs. normalized charged particle multiplicity $N_{ch}/\langle N_{ch} \rangle$. STAR results for $\Upsilon(1S)$ and J/ψ are compared to ALICE [12] and CMS [7] measurements.

SUPPRESSION IN AU+AU COLLISIONS

In Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$, the Υ $R_{\rm AA}$ is obtained by combining measurements in $\Upsilon \rightarrow e^+e^-$ and $\Upsilon \rightarrow \mu^+\mu^-$ decay channels. The resulting

 $R_{\rm AA}$ of $\Upsilon(1S)$ vs. number of nucleons participating in $_{
m 87}$ 67

a collision (a measure of centrality) N_{part} is shown in ⁸⁸ 68 Fig. 3 along with the CMS data [13]. These results are $_{\tt 89}$

69 compared to a model calculation [14], which includes 90 70

QGP effects as well as regeneration and CNM effects. 91 71

Fig. 3. Nuclear modification factor R_{AA} of $\Upsilon(1S)$ vs. number of participating nucleons $N_{\rm part}.$ The STAR data are compared to CMS results [13] and a model calculation [14].

112 The R_{AA} of $\Upsilon(2S+3S)$ is shown in Fig. 4 and com-72 pared to $\Upsilon(2S)$ measurements by CMS [13] as well as $_{_{114}}$ 73 calculations by the same model [14]. 74 115

Fig. 4. Nuclear modification factor R_{AA} of $\Upsilon(2S+3S)$ vs. N_{part} . The STAR data are compared to CMS results for ¹³¹ $\Upsilon(2S)$ [13] as well as a model calculation [14].

CONCLUSIONS 75

STAR experiment has measured Υ production in $^{^{137}}$ 76 p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ and $\sqrt{s} = 500 \text{ GeV}$.¹³⁸ 77 The $\Upsilon(1S)$ data are well described by CEM model cal-¹³⁹ 12. 78 culation [8] for inclusive $\varUpsilon(1S),$ while overestimated $^{\mbox{\tiny 140}}$ 79 by CGC+NRQCD model [9, 10] for direct $\Upsilon(1S)$. The ¹⁴¹ 80 charged particle multiplicity N_{ch} dependence was also¹⁴² 81 studied, by measuring normalized $\Upsilon(1S)/\langle \Upsilon(1S) \rangle$ yield ¹⁴³ 82 vs. $N_{ch}/\langle N_{ch}\rangle$. Similar trend is observed for $\Upsilon(1S)$ and ¹⁴⁴ 83 J/ψ at RHIC and LHC experiments. This suggests 84 similar phenomena happen for these particles even at 85 different collision energies. 86

In Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV, the Υ production is measured both in dielectron and dimuon decay channels and the results are combined for better precision R_{AA} calculation. Both R_{AA} of $\Upsilon(1S)$ and $\Upsilon(2S+3S)$ is measured vs. number of participant nucleons N_{part} . The $\Upsilon(1S)$ data show a similar level of suppression at STAR and CMS, despite higher medium temperature reached at CMS. This could point to regeneration or CNM effects playing a role. and better constraints on these effects are needed. It should be also noted that most likely a large fraction of the observed suppression is due to the suppression of the feed-down contributions from the excited states. In central Au+Au collisions, $\Upsilon(2S+3S)$ R_{AA} is smaller than that of $\Upsilon(1S)$, consistent with the expectation of the sequential suppression. The $\Upsilon(2S+3S)$ data indicate a smaller suppression at RHIC than at LHC in peripheral collisions. All these data are qualitatively described by a model calculation [14], which includes the effects of Debye-like screening of color charges in hydrodynamic-modeled QGP with addition of regeneration and CNM effects.

ACKNOWLEDGMENT: This work was also supported from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778 and by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.

REFERENCES 116

108

109

110

111

126

127

129

130

- 1. W. Busza, K. Rajagopal, W. van der Schee, An-117 nual Review of Nuclear and Particle Science 68(1), 118 339 - 376 (2018).119
- 2. T. Matsui, H. Satz, Physics Letters B 178(4), 120 416-422 (1986). 121
- 3. S. Chatrchyan, V. Khachatryan et al., Physical Re-122 view Letters 109(22), 222301 (2012). 123
- 4. Z. Lin, C. M. Ko, Physics Letters B 503(1-2), 124 104-112 (2000). 125
 - 5. F. Arleo, S. Peigné, Journal of High Energy Physics 122(3) (2013).
- 6. R. Vogt, Physical Review C **71(5)** (2005) 128
 - S. Chatrchyan, V. Khachatryan et al., Journal of 7. High Energy Physics, 4, 103 (2014).
 - R. Vogt, Physical Review C 92(3), 034909 (2015). 8.
- 9. H. Han, Y.-Q. Ma, C. Meng, H.-S. Shao, Y.-J. 132 Zhang, K.-T. Chao, Physical Review D 94(1), 133 014028 (2016). 134
- ¹³⁵ 10. Y.-Q. Ma, R. Venugopalan, Physical Review Letters 113(19), 192301 (2014). 136
 - J. Adam, L. Adamczyk et al., Physics Letters B 786 11. 87-93 (2018).
 - B. Abelev, J. Adam et al., Physics Letters B **712(3)**, 165–175 (2012).
 - 13. V. Khachatryan, A. M. Sirunyan et al., Physics Letters B 770, 357–379 (2017).
 - X. Du, M. He, R. Rapp, Physical Review C 96(5), 14.054901 (2017).