

Measurement of global polarization of Λ hyperons in Au+Au $\sqrt{s_{NN}}$ = 7.2 GeV fixed-target **collisions at RHIC-STAR experiment**

Kosuke Okubo for the STAR collaboration University of Tsukuba Strangeness in Quark Matter Conference 2021 20, May, 2021

Supported in part by

STAR Introduction

♦In non-central collisions...

The created matter should exhibit strong vorticity.

-Z.-T.Liang and X.-N. Wang, PRL94, 102301

The strong magnetic field would appear in the initial state.

-D. Kharzeev, L. McLerran, and H. Warring, Nucl. Phys. A803, 227 (2008)

-McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

Global polarization

- Large angular momentum transfers to the spin degrees of freedom:
 - -Particle and anti-particle's spins are aligned with angular momentum.
- Spin alignment by magnetic field:
 - -Particles and anti-particles get aligned in the opposite direction due to the opposite signs of their magnetic moments.

✓ Both are considered to contribute to the global polarization.

Kosuke Okubo, SQM2021, 2021/5/20

How to measure the global polarization? STAR

Parity-violating decay of hyperon

Daughter proton preferentially decays along the Λ 's spin (opposite for anti- Λ).

$$\Lambda \rightarrow p + \pi^-$$
 (BR:63.9%, c τ ~7

Polarization can be measured via the distribution of the azimuthal angle of the daughter proton (in the hyperon rest frame).

Projection onto the transverse plane

 $\langle sin(\Psi_1 - \Psi_p) \rangle$

 $Res(\Psi_1)$

- $\Psi_1: 1^{st}$ -order event plane
 - ϕ_p^* : azimuthal angle of the daughter proton in the Λ 's rest frame

- STAR, PRC76, 024915(2007)

 $\pi \alpha_H$

7.9cm)

y

 α_H : decay parameter ($\alpha_{\Lambda} = 0.732 \pm 0.014$)

P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys.2020, 083C01 (2020).

Kosuke Okubo, SQM2021, 2021/5/20

STAR Motivation

A global polarization has been measured from $\sqrt{s_{\rm NN}}$ = 2.4 GeV to 5.02 TeV.

✓Polarization increases at low collision energy.

 \checkmark No significant difference between Λ and anti- Λ .

 \checkmark Preliminary \land polarization measurement at $\sqrt{s_{\rm NN}}$ = 2.4 GeV from HADES is consistent with zero.

New analysis of global polarization at $\sqrt{s_{NN}} = 7.2 \text{ GeV}$ with fixed-target experiment.

√209M events at 7.2 GeV > 4M events at 7.7 GeV (BES I). (Good minimum bias events)

Kosuke Okubo, SQM2021, 2021/5/20

STAR The STAR detector

- **Time Projection Chamber (TPC)** •
- Time-Of-Flight (TOF)
- **Event Plane Detector (EPD)**

- ✓The gold target was installed inside the vacuum pipe at z = 2.0 m.
- ✓Target is 0.25 mm thick and ~1% interaction probability.
- ✓209M good minimum bias events for Au+Au with fixed-target experiment at $\sqrt{s_{\rm NN}} = 7.2$ GeV.
- ✓ Mid-rapidity for 7.2 GeV is -2.02.

Event plane correlation and resolution

STAR

✓ Event plane resolution was calculated by 3-subevent method.

 $\langle \cos([\Psi_1^A - \Psi_1^B]) \rangle = \langle \cos([\Psi_1^A - \Psi_1^{\text{true}}]) \rangle \langle \cos([\Psi_1^{\text{true}} - \Psi_1^B]) \rangle$ $=\sigma_n^A\sigma_n^B$ $\langle \cos([\Psi_1^A - \Psi_1^B]) \rangle \langle \cos([\Psi_1^A - \Psi_1^B]) \rangle$ $Res(\Psi_1^A) = \mathbf{1}$ $\langle \cos([\Psi_1^B - \Psi_1^C]) \rangle$ A : EPD most inner 4 rings A. M. Poskanzer and S. A. Voloshin, Phys. B : TPC ($-0.5 < \eta < 0$) Rev. C 58, 1671 (1998). C : TPC ($-1.5 < \eta < -1.0$)

✓ First-order event plane was reconstructed by the following formula.

$$\Psi_1 = \tan^{-1}\left(\frac{\sum w_i \sin(\phi_i)}{\sum w_i \cos(\phi_i)}\right)$$

Kosuke Okubo, SQM2021, 2021/5/20

STAR A reconstruction

√p-π DCA < 1.1 cm

 Charged particles can be identified via specific ionization energy loss in the TPC and mass estimated from TOF.

*Proton	*Pion	
$ n\sigma < 3$	$ n\sigma < 3$	
$ oldsymbol{<} 0.5 < m^2 < 1.5 \ (GeV/c^2)$) ² $\checkmark -0.06 < m^2 < 0.1$ (Ge	
Topological cut		
√p-DCA > 0.4 cm	√Λ-DCA < 0.8 cm	
√π-DCA > 1.6 cm	✓ Decay length > 5.0 cm	

These values of topological cut are slightly tuned depending on centrality.

(Centrality 30-40%)

9

STAR Collision energy dependence of Ph

- \checkmark First measurement in Au+Au collisions at $\sqrt{s_{\rm NN}} = 7.2 \, {\rm GeV}.$
 - •Observed positive Λ global polarization!
 - The result follows the global trend of the energy dependence.
 - Λ global polarization increases at lower collision energies.

STAR Centrality dependence of Ph

✓Polarization increases in more peripheral collisions.

Kosuke Okubo, SQM2021, 2021/5/20

Rapidity dependence of Ph

 \checkmark Polarization is expected to depend on rapidity but the prediction is different among models.

✓The result does not show significant rapidity dependence within our acceptance.

✓Polarization in large rapidity region can be explored in the future with iTPC and forward upgrade (2023+2025).

p_т dependence of Pн

STAR

√One might expect ...

-decrease at low $p_{\rm T}$ due to the smearing effect caused by scattering at the later stage of the collisions.

-decrease at high $p_{\rm T}$ due to jet fragmentation.

J. Adams et al. (STAR), PRC98, 14910 (2018)

vNo significant $p_{\rm T}$ dependence.

Kosuke Okubo, SQM2021, 2021/5/20

Summary

♦We presented Λ global polarization in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.2 GeV with fixed-target configuration.

- Positive polarization is observed.
- Λ polarization increases at lower collision energies.
- Increasing trend towards peripheral collisions as expected.
- There are no significant rapidity and $p_{\rm T}$ dependences.

Outlook

Measurement of anti-A polarization.

 \checkmark We completed the data taking of BES II + FXT.

 $-\sqrt{s_{NN}} = 7.2 \text{ GeV} : 267 \text{M(now)} \rightarrow 267 \text{M} + \text{about 300M}.$

Collider mode data at BES II

Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Number Events	Dat
(GeV/nucleon)	(GeV)	(MeV)	Requested (Recorded)	Collec
13.5	27	156	(560 M)	Run-
9.8	19.6	206	400 M (582 M)	Run-
7.3	14.6	262	300 M (324 M)	Run-
5.75	11.5	316	230 M (235 M)	Run-
4.59	9.2	373	160 M (162 M)	Run-20
3.85	7.7	420	100 M (100 M)	Run-

Fixed-target mode data at BES II

-	O					
ſ	Beam Energy	$\sqrt{s_{\rm NN}}$	$\mu_{ m B}$	Run Time	Number Events	Γ
	(GeV/nucleon)	(GeV)	(MeV)		Requested (Recorded)	
ſ	31.2	7.7 (FXT)	420	$0.5{+}1.1 \mathrm{~days}$	$100 \text{ M} (50 \text{ M}{+}112 \text{ M})$	Γ
	19.5	6.2 (FXT)	487	$1.4 \mathrm{days}$	100 M (118 M)	
	13.5	5.2 (FXT)	541	$1.0 \mathrm{day}$	100 M (103 M)	
	9.8	4.5 (FXT)	589	$0.9 \mathrm{~days}$	100 M (108 M)	
	7.3	3.9 (FXT)	633	$1.1 \mathrm{~days}$	100 M (117 M)	
	5.75	3.5 (FXT)	666	$0.9 \mathrm{~days}$	100 M (116 M)	
	4.59	3.2 (FXT)	699	2.0 days	100 M (200 M)	
	3.85	3.0 (FXT)	721	$4.6 \mathrm{~days}$	100 M (259 M)	

Kosuke Okubo, SQM2021, 2021/5/20

Back up

\checkmark Pile up events are removed using TOF start timing(T0).

Kosuke Okubo, SQM2021, 2021/5/20

16

✓ Observed polarization is more sharply peaked near Λ mass and it dips on the sides mass peak.

The width of the invariant mass depends on the daughter's azimuthal emission angle relative to the Λ .

Extract the polarization signal STAR

✓ Calculate polarization each $\phi_{\Lambda} - \phi_{p}^{*}$ bin.

- Invariant mass method
 - The data was fitted with the following formula.

 $\langle \sin(\Delta\phi) \rangle^{\text{obs}} = (1 - f^{\text{Bg}}(M_{inv})) \langle \sin(\Delta\phi) \rangle^{\text{Sg}} + f^{\text{Bg}}(M_{inv}) \langle \sin(\Delta\phi) \rangle^{\text{Bg}}$

$$\Delta \phi = \Psi_1 - \phi_p^*$$
$$f^{Bg}(M_{inv}) = f(M_{inv}^{Bg})/f(M_{inv}^{obs})$$

✓ Observed polarization is described as follows.

$$\frac{8}{\pi\alpha_H}\frac{1}{R^1_{EP}}\left\langle\sin\left(\Psi_1-\phi_p^*\right)\right\rangle^{Sg}=P_\Lambda^{true}+c\nu_1\sin\left(\phi_\Lambda-\phi_p^*\right)$$

- ✓ Different topological cut(~1.6%)
 - -Ten different cuts are applied.

- -Invariant mass method
- -Event plane method
- \checkmark Background assumption for polarization in the invariant mass method(~0.4%)
- ✓ Uncertainty from decay parameter α_{H} (~3.2%)
- ✓Cumulant correction(~3.8%)
- ✓ Efficiency correction(~8.2%)

• p-DCA \pm 0.1cm • π -DCA \pm 0.1cm	 Λ-DCA±0.1cm Decay length±0.5cm
• p-π DCA±0.1cm	• Decay length±0.5cm

