1	Pion femtoscopy in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV
2	in the STAR experiment
3	
4	A. Kraeva (for the STAR Collaboration)
5	E-mail: annakraeva555@gmail.com
6	National Research Nuclear University MEPhI, Kashirskoe highway 31, Moscow, 115409, Russia
7	
8	
9	There is a method that allows directly measuring the spatio-temporal extent
10	of the region where hadrons are emitted and the parameters of the nuclear-nuclear
11	interaction, called femtoscopic correlation [1]. In heavy-ion collisions, femtoscopy
12	is an important tool for studying the geometric and dynamic characteristics of the
13	emission region.
14	Two-particle momentum correlations of identical particles in nuclear-nuclear
15	collisions make it possible to extract femtoscopic parameters (radii of emission
16	region, R, and correlation strength, λ) [2]. Reaction dynamic is reflected in the
17	femtoscopic radii dependence on pair transverse momentum, k_T .
18	This work is devoted to the study of two-particle momentum correlations of
19	identical pions produced in collisions of gold nuclei in the STAR experiment at the
20	RHIC at $\sqrt{s_{NN}} = 3$ GeV. The extracted three-dimensional femtoscopic radii (R_{out} ,
21	R_{side} , R_{long}) are measured as a function of collision centrality and transverse
22	momentum of the pairs.
23	
24	
25	References:
26	[1] Podgoretsky M.I. Interference correlations of identical pions, Sov. J. Nucl. Phys.
27	- 1989 V.20 P.3.
28	[2] Lisa M.A. et al. Femtoscopy in relativistic heavy ion collisions: two decades
20	of magness Annu Day Nucl Dart Soi 2005 V 55 D 257

29 of progress, Annu. Rev. Nucl. Part. Sci. – 2005. – V.55. – P.357.