

Measurement of directed flow of K^{*0} and φ resonances in Au+Au collisions at RHIC BES energies

Md Nasim (for the STAR Collaboration) IISER Berhampur, India

Quark Matter 2025, Frankfurt, Germany

Supported in part by

STAR Collaboration

Outline

- Introduction
- STAR Experiment
- Flow Measurement Method
- Results : Directed flow of $K^{\star 0}$ and ϕ mesons
 - Rapidity dependence
 - Transverse momentum dependence
 - Centrality dependence
 - Comparison with model calculation
- Summary

K^{*0} probes hadronic medium

- Reconstructed K*⁰ yield can be affected by hadronic interaction suffered by its daughter particles between Chemical Freeze-out and Kinetic Freeze-out
- BES Program at RHIC allows us study rescattering/regeneration in baryon-rich matter.
- Larger suppression of K*⁰/K ratio observed at RHIC BES data compared to top RHIC and LHC energies

ALICE: PLB 802, 135225 (2020) STAR: PRC 107, 037907 (2023)

Md Nasim

Md Nasim

Time of Flight (TOF)

- Full Azimuthal Coverage
- -1.0 < η < 1.0

Time Projection Chamber (TPC)

- Full Azimuthal Coverage
- -1.5 < η < 1.5

STAR Experiment

- Event Plane Detector (EPD)
- Full Azimuthal Coverage
- 2.1< |η| < 5.1

Md Nasim

Event Plane

- Directed flow of K^{*0} and ϕ is measured at mid-rapidity region (|y| <1.0).
- Event plane is determined using event plane detector (2.1 < $|\eta|$ < 5.1)

v₁ Measurement Method

- Invariant mass method for resonance reconstruction
- A Breit-Wigner function and a 1st order polynomial function are used to describe the signal and residual background.
- Invariant mass method is used to extract v₁ of resonances

$$v_1^{s+b}(\mathbf{m}_{inv}) = v_1^s \frac{s}{s+b}(m_{inv}) + v_1^b \frac{b}{s+b}(m_{inv})$$

$$v_1^b = p_1 + p_2 m_{inv} + p_3 m_{inv}^2$$

In addition, v_I^b has been varied to study the systematic error on v_I^s

Rapidity dependence of v₁

40-80% Au+Au collisions:Negative v_1 slope for charged Kaon, ϕ and K*⁰ resonances10-40% Au+Au collisions:Opposite v_1 slope for K*⁰ resonances compared to peripheral

Transverse momentum dependence of v_1

 K^{*0} v₁ shows a nontrivial p_T dependence in 10-40% centrality: positive at low p_T

This may be due to the hadronic rescattering, which dominates at low p_T

Transverse momentum dependence of v_1

 K^{*0} v₁ shows a nontrivial p_T dependence in 10-40% centrality: positive at low p_T

• ϕ meson v₁ is not affected by hadronic rescattering due to its longer lifetime.

Centrality dependence of v_1

Rapidity and p_T integrated (|y|<1.0 and $0 < p_T < 3.0$ GeV/c) v_1 as a function of Number of participants (N_{part})

 \rightarrow K^{*0} v₁ changes sign from peripheral to central collisions.

Centrality dependence of v_1

Rapidity and p_T integrated (|y|<1.0 and $0 < p_T < 3.0$ GeV/c) v_1 as a function of Number of participants (N_{part})

 \rightarrow K^{*0} v₁ changes sign from peripheral to central collisions, unlike charged kaons

Centrality dependence of v_1

Rapidity and p_T integrated (|y|<1.0 and $0 < p_T < 3.0$ GeV/c) v_1 as a function of Number of participants (N_{part})

 \rightarrow K^{*0} v₁ changes sign from peripheral to central collisions, unlike ϕ mesons

Data vs Model

 ϕ v₁: Model calculation successfully reproduces measured ϕ meson v₁

 $K^{*0}v_1$: Hydro model calculation shows opposite slope compared to data.

 \rightarrow Hydro+Hadronic afterburner qualitatively explain the data.

Model: PRC109, 044905 (2024)

Centrality dependent : K^{*0} and $K^{\pm} v_1$

 Hydro without UrQMD fails to explain, but Hydro+UrQMD can explain the centrality dependence of v₁ difference;

Model comparison suggests rescattering causes asymmetric loss of K^{*0} yield in momentum space.

Centrality dependent : K^{*0} and $K^{\pm} v_1$

 Hydro without UrQMD fails to explain, but Hydro+UrQMD can explain the centrality dependence of v₁ difference;

Model comparison suggests rescattering causes asymmetric loss of K^{*0} yield in momentum space.

Summary

- Measurement of v₁ of K^{*0}, φ and charged kaons in Au+Au collisions at 14.5, 19.6 and 27 GeV. First measurement of K^{*0} v₁ in heavy-ion collisions.
- In peripheral collisions, K^{*0} v₁(y) shows a negative slope like φ and kaons, but a positive slope in mid-central collisions.
- Model calculation suggests that asymmetric K^{*0} yield loss due to rescattering may cause positive v₁ slope in central Au+Au collisions.

Thanks....