J/Ψ PRODUCTION IN A+A COLLISIONS AT STAR

Ota Kukral for the STAR Collaboration

Czech Technical University in Prague

RHIC & AGS Annual Users' Meeting

17 June 2014

- \Box J/ ψ reconstruction
- Au+Au results
- J/ψ in U+U
- Future prospects: MTD and HFT
- Summary and outlook

Ota Kukral

Electron ID

- □ $J/\psi \rightarrow e^+e^-$ (B.R. 5.9%)
- □ TPC:
 - no distance from the expected mean value of dE/dx expressed as number of standard deviations
 - Often -1.5 < $n\sigma_{electron}$ < 2.0

Electron ID

- □ $J/\psi \rightarrow e^+e^-$ (B.R. 5.9%)
- □ TPC:
 - nσ distance from the expected mean value of dE/dx expressed as number of standard deviations
 - Often -1.5 < $n\sigma_{electron}$ < 2.0
- □ TOF:
 - Used mainly for p < ~1.4 GeV/c</p>
 - □ 0.97 < $1/\beta$ < 1.03 (as $\beta_{\text{electron}} \approx 1$)

Electron ID

- □ $J/\psi \rightarrow e^+e^-$ (B.R. 5.9%)
- □ TPC:
 - no distance from the expected mean value of dE/dx expressed as number of standard deviations
 - Often -1.5 < $n\sigma_{electron}$ < 2.0
- □ TOF:
 - Used mainly for p < ~1.4 GeV/c</p>
 - □ 0.97 < $1/\beta$ < 1.03 (as $\beta_{\text{electron}} \approx 1$)
- □ BEMC:
 - Used for $p > \sim 1.4 \text{ GeV/c}$
 - Electrons deposit most of their energy: E/p should be around 1

$J/\psi \rightarrow e^+e^-$ signals

- Combinatorial background estimated by like-sign and mixed events techniques
- Clear signals for both low and high p_T Au+Au collisions

Ota Kukral

200 100

J/ψ spectra in Au+Au at 200 GeV

- $\Box \quad Large p_T range$
 - Covers 0-10 GeV/c
- J/ψ spectra softer at low p_T than the Tsallis Blast-Wave model prediction with the same freeze-out parameters as for light hadrons
 - Recombination at low p_T?
 - Small radial flow?

Tsallis Blast-Wave model: Z.Tang et al., Chin.Phys.Lett. 30, 031201 (2013)

Ota Kukral

J/ψ spectra in Au+Au at 200 GeV

- Viscous hydrodynamics
 - J/ψ decoupling temperature of 120 and 165 MeV fails to describe the low p_T data
- Y. Liu et al.
 - model includes J/ψ suppression due to color screening and the statistical regeneration
 - describes the data well
 - peripheral: initial production dominates. central: regeneration becoming more significant at low p_T.

Y. Liu et al., Phys. Lett. B 678, 72 (2009) U. W. Heinz and C. Shen (2011), private communication.

J/ψ cold nuclear matter effects

Nuclear modification factor

$$R_{dAu} = \frac{dN_{dAu}^2/dP_T dy}{\left< N_{coll} \right> dN_{pp}^2/dP_T dy}$$

- $\square \quad \mathsf{R}_{\mathsf{dAu}} \approx 1 \text{ for high } \mathsf{p}_{\mathsf{T}}$
 - Cold nuclear effects are small at high p_T
 - High p_T results in A+A collisions provide a cleaner probe of the J/ψ interaction with the hot nuclear matter

PHENIX data: Phys. Rev. C 87, 034904 (2013) Model: E.Eskola, H.Paukkunenea and C.Salgo, Nucl. Phys. A 830, 599 (2009)

9/24

J/ψ suppression in Au+Au at 200 GeV

- Nuclear modification factor
 - Increase from low p_T to high p_T
 - Consistent with unity at high p_T peripheral collisions
 - More suppression in central than in peripheral collisions even at high p_T

STAR low-p_T : arXiv:1310.3563 high-p_T : Phys.Lett. B722, 55 (2013)

Liu et al., PLB 678, 72 (2009) Zhao and Rapp, PRC 82, 064905(2010) PLB 664, 253 (2008)

Ota Kukral

RHIC AGS Annual Users' Meeting 2014

10/24

J/ψ suppression in Au+Au at 200 GeV

- System size (N_{part}) dependence
 - R_{AA} decreases with the size of the system
 - Models including initial production and recombination reasonably describe the J/ψ in our measured p_T region
 - J/ ψ in central collisions suppressed even at high p_T
 - High p_T data less suppressed than low p_T

STAR low-p_T : arXiv:1310.3563 high-p_T : Phys.Lett. B722, 55 (2013)

Liu et al., PLB 678, 72 (2009) Zhao and Rapp, PRC 82, 064905(2010) PLB 664, 253 (2008)

PHENIX Phys. Rev. Lett. 98, 232301 (2007)

J/ψ suppression in Au+Au at 200 GeV

- □ System size (N_{part}) dependence
 - R_{AA} decreases with the size of the system
 - Models including initial production and recombination reasonably describe the J/ψ in our measured p_T region
 - J/ψ in central collisions suppressed even at high p_T
 - High p_T data less suppressed than low p_T

High $p_T J/\psi$ at LHC (prompt) is more suppressed than at RHIC (inclusive)

STAR: Phys.Lett. B722, 55 (2013) CMS: JHEP 05 (2012) 063

J/ψ at Beam Energy Scan (BES)

- Similar suppression at RHIC and SPS
- RHIC BES program: unique tool to study the interplay of CNM, screening and regeneration effects
- Quarkonia sequential melting: thermometer of QGP

SPS: Scomparin, QM2006

J/ψ at Beam Energy Scan (BES)

- \square J/ ψ observed at 200, 62.4 and 39 GeV
- Data from Run 10
- □ Signal up to p_T 4 GeV/c for 39 and 62.4 GeV

Ota Kukral

J/ψ suppression at RHIC BES

- R_{AA} for J/ψ in Au+Au at 200, 62.4 and 39 GeV
- Similar suppression for measured energies
 - pp reference is based on CEM calculations
 - Large theoretical uncertainty
- Consistent with theoretical calculations

p+p references for 39 and 62 GeV: Nelson, Vogt et al., PRC87, 014908 (2013)

Theoretical curves: Zhao, Rapp PRC82, 064905 (2010)

J/ψ suppression at RHIC BES

 Central vs. peripheral collisions:

$$R_{CP} = \frac{\frac{dN/dy}{\langle N_{coll} \rangle} \text{ (central)}}{\frac{dN/dy}{\langle N_{coll} \rangle} \text{ (peripheral)}}$$

 Significant suppression at 62.4 GeV, similar to 200 GeV

J/ψ elliptic flow v_2

- Consistent with zero (p_T > 2 GeV/c)
- The only hadron so far that does not flow.
- Disfavors coalescence from thermalized charm quarks at high p_T

[29] L. Yan, P. Zhuang, N. Xu, PRL 97 (2006), 232301.
[30] V. Greco, C.M. Ko, R. Rapp, PLB 595, 202.
[32] X. Zhao, R. Rapp, arXiv:0806.1239 (2008)
[33] Y. Liu, N. Xu, P. Zhuang, Nucl. Phy. A, 834, 317.
[34] U. Heinz, C. Shen, private communication.

Motivation for U+U collisions

- U+U collisions at 193 GeV per nucleon pair (2012)
- Uranium nucleus is larger than Au and non-spherical
 - U+U collisions (orientation averaged) provide higher energy density
 - Tip-to-tip collisions provide the highest energy density

STAR Collaboration: arXiv 1310.3563 (2013)

Motivation for U+U collisions

- U+U collisions at 193 GeV per nucleon pair (2012)
- Uranium nucleus is larger than Au and non-spherical
 - U+U collisions (orientation averaged) provide higher energy density
 - Tip-to-tip collisions provide the highest energy density

STAR Collaboration: arXiv 1310.3563 (2013)

Motivation for U+U collisions

- U+U collisions at 193 GeV per nucleon pair (2012)
- Uranium nucleus is larger than Au and non-spherical
 - U+U collisions (orientation averaged) provide higher energy density
 - Tip-to-tip collisions provide the highest energy density

J/ψ invariant yield and R_{AA} in U+U

- □ Nuclear modification factor as a function of p_T similar to Au+Au
- Study of centrality dependence of R_{AA} ongoing
 - central trigger data available

Muon Telescope Detector (MTD)

Heavy Flavor Tracker (HFT)

- Inner tracking system precise pointing resolution
- □ Study of non-prompt J/ ψ (B \rightarrow J/ ψ + X; ct ≈ 500 µm)
- Installed for year 2014

Summary and outlook

J/ψ in Au+Au at 200 GeV

- Suppression observed increases with centrality and decreases with p_T
- Eliptic flow consistent with zero ($p_T > 2 \text{ GeV/c}$)
- **J**/ ψ in Au+Au at 39 GeV and 62.4 GeV
 - Similar suppression as in 200 GeV within uncertainties
- J/ψ in U+U collisions at 193 GeV
 - Suppresion pattern similar to Au+Au
- Outlook
 - 2014: Large statistics Au+Au at 200 GeV
 - Muon Telescope Detector: $J/\psi \rightarrow \mu^+\mu^-$
 - Heavy Flavor Tracker: separation of prompt and non-prompt J/ψ

Additional slides

Motivation

Mass of charm quark is high (~1.3 GeV/c²)

- Production can be described by pQCD
- Produced early in hard processes
- D Quarkonia (J/ ψ , Y) are expected to be suppressed in QGP
 - In-medium screening of color charge temperature dependent

Satz, Nucl. Phys. A783: 249-260(2007)

- Other important effects:
 - Recombination from uncorrelated charm pairs
 - Observed yields are a mixture of direct production + feeddown (also from B meson)
 - Cold nuclear effects (such as modification to PDFs or nuclear absorption)

STAR experiment

- Brookhaven
 National Laboratory,
 USA
- Time Projection Chamber (TPC)
 - Particle momentum, dE/dx
- Time Of Flight (TOF)
 - Particle velocity (1/β)
 - Barrel Electromagnetic Calorimeter (BEMC)
 - Electron/photon energy