Transverse single spin asymmetries at large Feynman x in the STAR experiment at RHIC

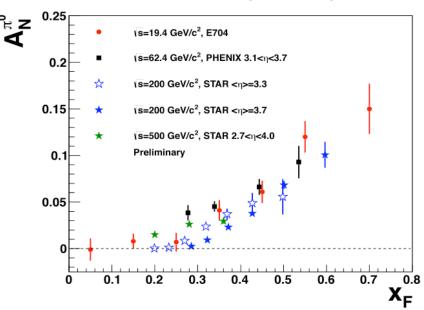
Mriganka Mouli Mondal (for the STAR Collaboration)
Institute of Physics, Bhubaneswar

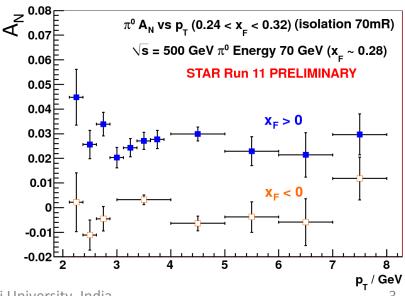
Outline

- ♦ Transverse Single Spin Asymmetries
- ♦ The STAR experiment and Forward Meson Spectrometer (FMS)
- \Rightarrow EM-Jets in forward and central rapidity and A_N measurements at RHIC Run 11 at \sqrt{s} = 500 GeV
- **♦** STAR Forward Upgrades

π⁰ A_N Measurements at Forward Rapidity

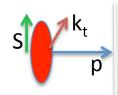
Inclusive π^0 production


$$p \uparrow + p \rightarrow \pi^0 + X$$


Transverse Single Spin Asymmetry

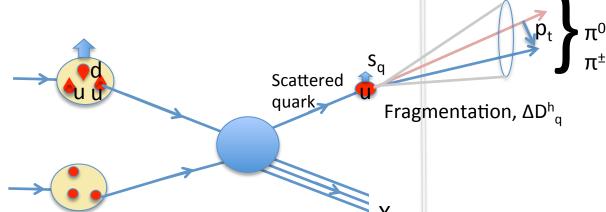
$$A_N = \frac{\delta \sigma^{\uparrow} - \delta \sigma^{\downarrow}}{\delta \sigma^{\uparrow} + \delta \sigma^{\downarrow}}$$

$$x_F = 2p_Z/\sqrt{s}$$


- \diamondsuit Rising A_N with x_F
- \diamond A_N nearly independent of \sqrt{s}

Sivers and Collins effect

Sivers effect: the correlation between the transverse momentum (k_t) of the struck quark and the spin (S) and momentum (p) of its parent nucleon


Sivers distribution

$$f_{q/p^{\uparrow}}(x, k_t) = f_1^q(x, k_t^2) - f_{1t}^{\perp q}(x, k_t) \frac{\mathbf{S} \cdot (\mathbf{k_t} \times \hat{\mathbf{p}})}{M}$$

Collins effect :spin-momentum correlation in the hadronization process

$$\mathbf{s_q} \cdot (\mathbf{k_q} \times \mathbf{p_t})$$

s_q = spin of the fragmenting quark
 k_q = momentum direction of the quark
 p_t = transverse momentum of hadron with
 respect to the direction of the fragmenting quark

D. Sivers, Phys. Rev. D 41, 83 (1990)

Sensitive to *proton spin-* parton *transverse motion* correlations

J. C. Collins, Nucl. Phys. **B396**, 161 (1993)

Sensitive to transversity(δq)

Separating Sivers and Collins effects

$$\propto \int_{1T}^{\perp q} (x, k_{\perp}^{2}) \cdot D_{q}^{h}(z) \qquad \propto \underbrace{\delta q(x) \cdot H_{1}^{\perp}(z_{2}, \overline{k}_{\perp}^{2})}_{\text{Quark transverse spin distribution}} \qquad \text{Collins FF}$$

Observed transverse single-spin asymmetries of inclusive hadrons could arise from the Sivers effect or Collins effect, or from a linear combination of the two

need to move beyond inclusive production

- Sivers effect: Full Jets, Direct photons, Drell-Yan
- Collins effect: azimuthal orientation of particles within a jet

RHIC: the world's first and only polarized proton collider

For 2011: Average Blue Beam Polarization = 51.6% (Transverse) Luminosity = 22 pb⁻¹ Hydrogen Jet Polarimeter **Carbon Polarimeters** Siberian Snakes Beams: √s 62.4 - 500 GeV pp PHENIX Spin Flipper **STAR** Siberian Snakes **Spin Rotators** Tune Jump Quads **Polarized Source** Helical Partial Snake LINAC **AGS** BOOSTER 200 MeV Polarimeter Strong Snake **AGS Internal Polarimeter RF** Dipole AGS pC Polarimeter

Forward ECAL in STAR

FMS Pb Glass EM Calorimeter pseudo-rapidity 2.5<\u00e9<4.0 Small cells: Outer cells: Unpolarized 3.81x3.81 cm 5.81 x 5.81 cm Proton Transversely **Polarized** Proton

Forward Meson Spectrometer (FMS) - 2011:

- -- Pb glass EM calorimeter covering 2.5< η <4.0
- -- Detect π^0 , η , direct photons and jet-like events in the kinematic region where transverse spin asymmetries are known to be large.

Photons in FMS

Towers→ Clusters→ (shower shape fits)

Photon candidates (photons)

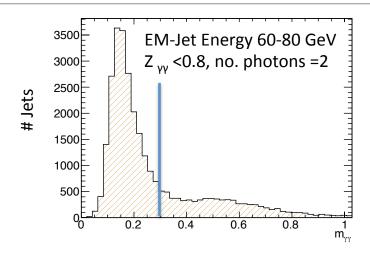
EM-Jet characteristics

p+p Vs = 500 GeV transverse datasets

Jet algorithm: anti-kt

R-parameter: 0.7

 $p_T^{EM-Jet} > 2.0 \text{ GeV/c}$

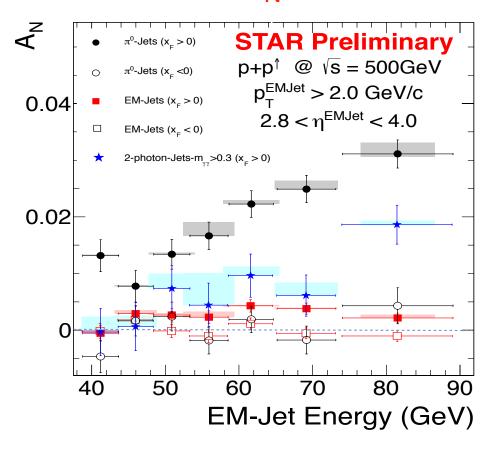

photons with $p_T > 0.001 \text{ GeV/c}$

Leading EM-Jets:

Multi-photon Jets with highest energy

 $2.8 < \eta^{EM-Jet} < 4.0$

40 GeV < Energy^{EM-Jet} < 100 GeV

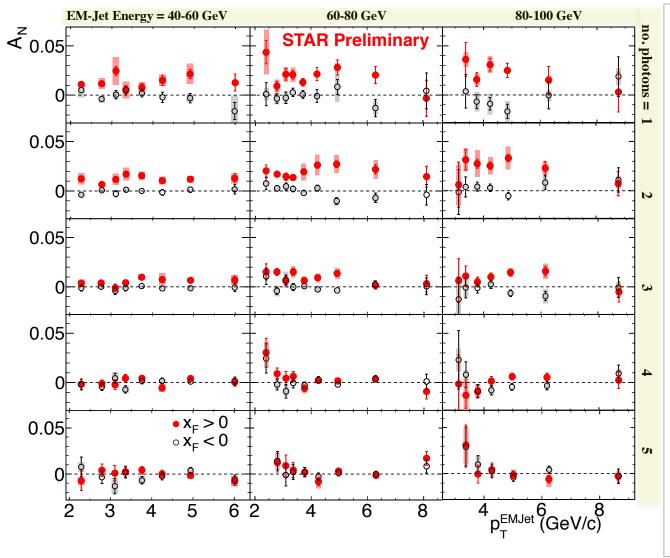

γγ invariant mass 2-photon EM-jets

 $dE/d(\Delta R)$ distribution of EM-Jets

- \diamondsuit 2-photon jets are mostly π^0

A_N vs. EM-Jet Energy


```
π<sup>0</sup>-Jets – 
2\gamma-EM-Jets m_{\gamma\gamma} < 0.3 Z_{\gamma\gamma} < 0.8
```

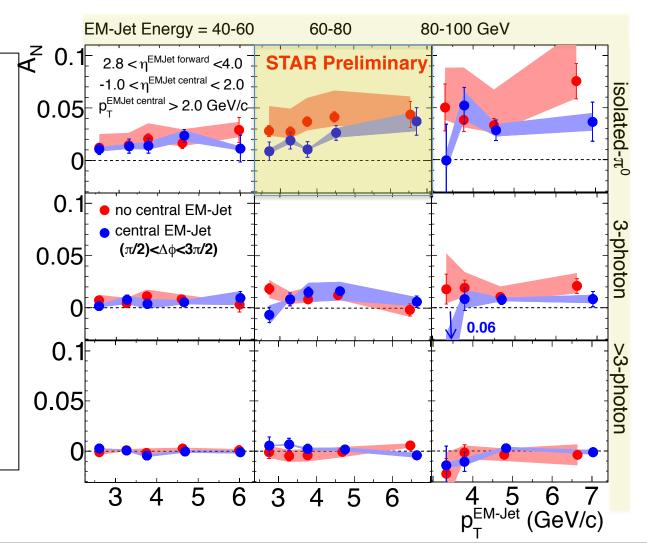

2γ-EM-Jets (η + continuum) –
$$m_{\gamma\gamma} > 0.3$$

```
EM-Jets – photons >2
```

Isolated π^0 :

- reconstructed π^0 for 2-photon jet
- II) no photon within physical cone (eg. 70mR) of reconstructed π^0
- \diamond Isolated π^{0} 's have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)
 - https://indico.triumf.ca/contributionDisplay.pycontribId=349&sessionId=44&confId=1383
- ♦ Asymmetries for jets with photons >2 events are much smaller.

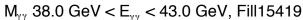
A_N for different # photons in EM-Jets

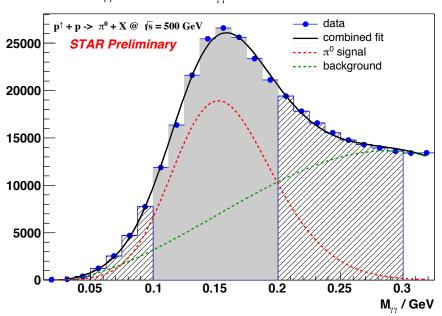


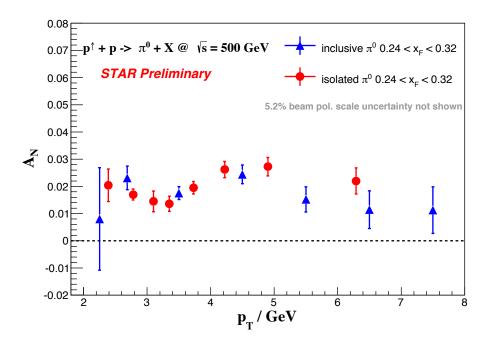
- 1-photon events, which include a large π⁰ contribution in this analysis, are similar to 2-photon events
- Three-photon jet-like events have a clear non-zero asymmetry, but substantially smaller than that for isolated π⁰′s
- ♠ A_N for #photons >5 is similar to that #photons
 = 5

A_N for correlated central jets and no central jet cases

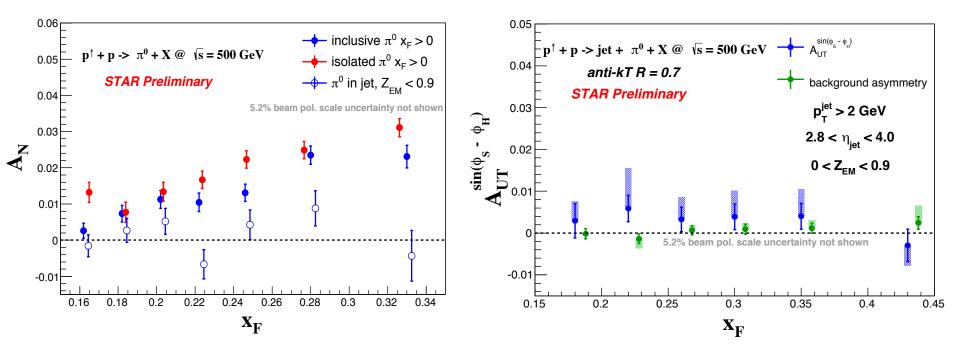
JETs at central rapidity


- EM Jets are reconstructed in midrapidity BEMC +EEMC, -1.0<η^{EM-} Jet<2.0
- Back to back Δφ
 relations used to find
 if there is any
 associated jets
- 2 → 2 parton scattering




 \diamondsuit Asymmetries for the forward isolated π^0 are low when there is a correlated away-side jet.

A_N for π^0 and Collins asymmetries of π^0


- π^0 is reconstructed from FMS
- Collins asymmetries of π^0 relative to jet axis is being measured

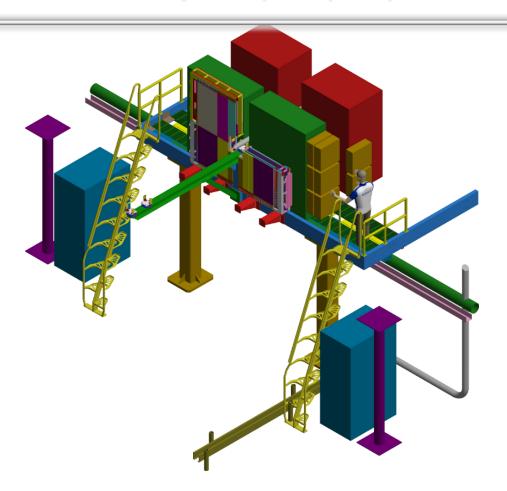
A_N for π^0 and Collins asymmetries of π^0

- Isolated π^0 tend to have significantly larger asymmetries than π^0 associated with jet activities in the vicinity.
- Sivers (EM-Jets) and/or Collins (π^0 relative to jet axis) asymmetries are insufficient to account for the observed inclusive π^0 single spin asymmetries.

Summary and Outlook

- \Rightarrow Jets with isolated π^0 have large asymmetry.
- \Leftrightarrow A_N decreases as the event complexity increases.
- \Leftrightarrow Isolated π^0 asymmetries are smaller when there is a correlated EM-jet at mid-rapidity.

Large forward π^0 A_N: Comes from 2 \rightarrow 2 parton scattering with some contribution from diffractive events?


 \diamond Sivers (EM-Jets) and/or Collins (π^0 relative to jet axis) asymmetries are insufficient to account for the observed inclusive π^0 single spin asymmetries.

- □2015 : installation of FMS-Preshower and Roman pots p+p 200 GeV longitudinal & transverse p↑+Au/Al 200 GeV transverse, Spin effects in diffraction
- ■2017: installation of **FMS-Postshower** p+p 510 GeV transverse A_N for Dell Yan, direct photons

Forward Upgrade (≥2021) Overview

Requirements:

- wide acceptance mid-rapidity detector with good PID (p,K,p)
- \rightarrow forward rapidities (1.0 < η < 4.5) Ecal + HCal + charge identification

Forward rapidities

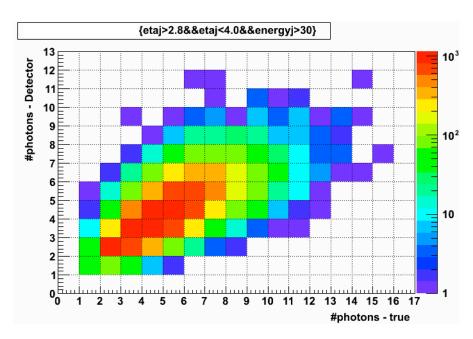
• $2.5 < \eta < 4.5$

Preshower detector

EM calorimeter

PHENIX PbSc

Hadronic calorimeter


• $L = 4\lambda_1$

4-6 additional layers of Silicon Microstrip and/or small-strip Thin Gap Chamber

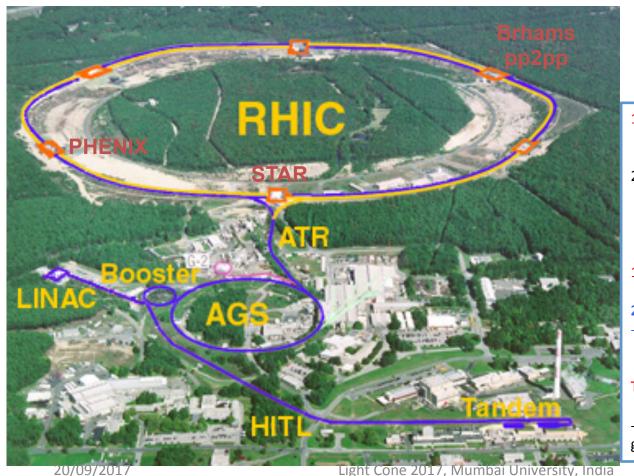
backup

Data point corrections and better understanding Detector with GEANT simulations

- Understanding FMS data with full PYTHIA simulations with standard STAR framework.
- Construct the matrix #true photon vs. #photons detected: This would be used for correcting A_{N,EM-Jets} of a certain n-photon-class from the effect of probability misidentifying to the other n-photon-clases

#photons in Jets in MC and data was not matching:

- 1. Attenuation was not there in GEANT energy deposition mode. GEANT is used with an attenuation factor.
 - 2. PYTHIA tune dependencies are checked: Hard diffraction not in current scope of PYTHIA6



The Relativistic Heavy Ion Collider

Au+Au+Cu+Au

Polarized p+p, d+Au Polarized p + Au RHIC is a QCD lab

RHIC Physics Focus

- **Heavy-ion Program**
 - -- Study medium properties, EoS
 - --pQCD in hot and dense medium
- RHIC beam energy scan
 - --search of critical point
 - -- chiral symmetry restoration
- Longitudinal and transverse spin programs
- --Study proton intrinsic properties
- **Forward program**
- -- spin structure of proton
 - --Study of low x properties and **search for CGC**

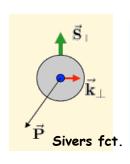
Tagged forward physics

- --Study elastic and inelastic processes
- --Investigate gluonic exchanges and search for gluonic matter

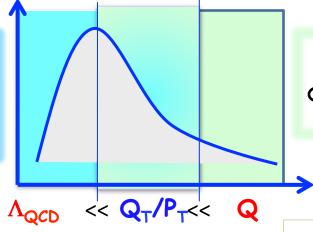
TSSA – two theoretical framework

Spin-dependent transverse momentum dependent (TMD) function S_T.(Pxk_T

Brodsky, Hwang, Schmidt, 02 Collins, 02, Ji, Belitsky, Yuan, 02


+ Collins fragmentation functions

Twist-3 quark-gluon correlations


Efremov & Teryaev: 1982 & 1984

Qiu & Sterman: 1991 & 1999

+ Twist three fragmentation functions

Transverse momentum dependent Q>>Q_T>=A_{QCD} Q>>p_T

Collinear/ twist-3 Q,Q_T>>∆_{QCD} p_T~Q

 Q_T/P_T

Need 2 scales
Q² and p_t
Remember pp:
most observables one scale
Exception:
DY, W/Z-production

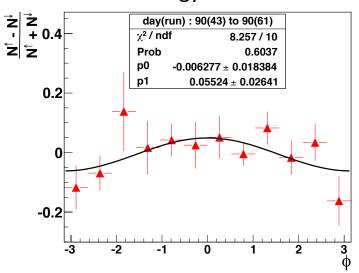
Need only 1 scale
Q² or p_t

should be of reasonable size should be applicable to most pp observables $A_N(\pi^0/\gamma/\text{jet})$

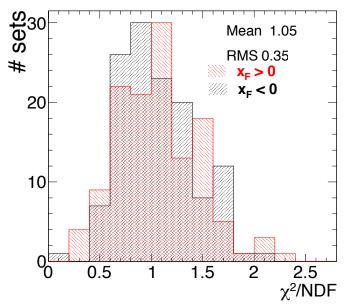
A_N from fits

\Rightarrow A_N is calculated from p0 + P×A_N cos(φ) fits over each fill on

$$\frac{\mathsf{N}\!\uparrow(\varphi)\text{-}\mathsf{N}\!\downarrow(\varphi)}{\mathsf{N}\!\uparrow(\varphi)\text{+}\mathsf{N}\!\downarrow(\varphi)} = \mathsf{p}\mathsf{0} + \mathsf{P}\!\!\times\!\mathsf{A}_\mathsf{N}\mathsf{Cos}(\varphi)$$

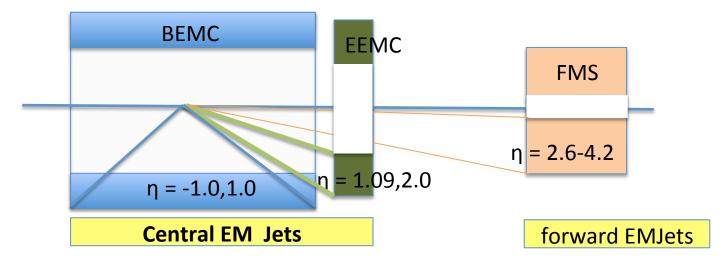

p0 = relative luminosity

 A_N = asymmetry


P = polarization

- --- A_N 's are corrected for polarization values from RHIC-fills
- --- A_N and χ^2/NDF are calculated over entire fills

EM-Jet Energy = 55-57.5 GeV

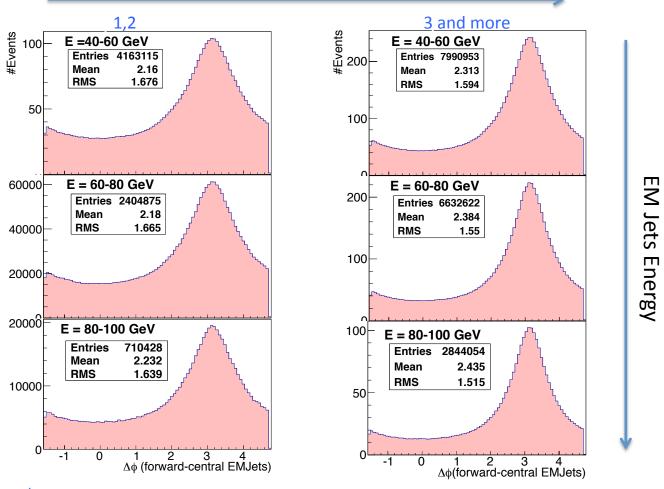


For 2-photon isolated π^0

For each slice of data averaged over ~18 fills. Fits are well in control.

A_N with mid-rapidity activities

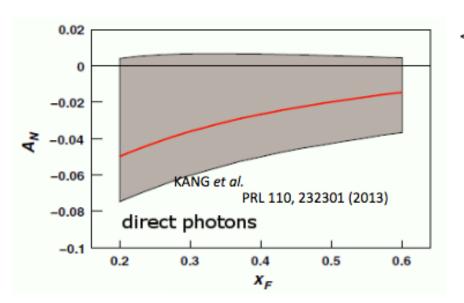
towers (BEMC+EEMC):

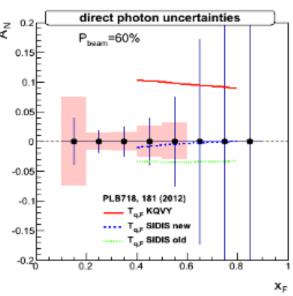

anti- k_T , R = 0.7, $p_T^{EM-Jet} > 2.0 \text{ GeV/c}$, -1.0< $\eta^{EM-Jet} < 2.0$

Leading central EM-Jets : Jet with highest p_T

- Case-I : having no central jet
- Case-II: having a central jet

ΔΦ correlations between forward and central EM-Jets


- ♦ Correlation is stronger for more N photon Jets
- ♦ For higher EMJets energy, correlation grows stronger


RHIC Cold QCD Schedule

Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A _N ^{DT} : Postshower to FMS@STAR
			Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_S-2\phi_h)}$ $A_{UT}^{\sin(\phi_S-\phi_h)}$ modulations of h^{\pm} in jets, $A_{UT}^{\sin(\phi_S)}$ for jets	None
			First look at GPD Eg	A_{UT} for J/ Ψ in UPC	None
2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
			evolution of ETQS fct. properties and nature of the diffractive exchange in p+p collisions.	A_N for γ A_N for diffractive events	None None
2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	$R_{pAu}(DY)$:Yes Forward instrum.
			Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_S - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
			Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAJ} : direct photons and DY	R _{p,d,l} (DY): Yes Forward instrum.
			A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_S - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
			A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.

STAR future measurements

Observable without fragmentation func. : Drell-Yan, W[±] /Z, jets, direct photons

 $\gamma_{\text{direct}} \text{ measurements as a test of} \\ \text{twist-3 framework}$

STAR : pp 200GeV, L = 40/pb, P=60%

STAR forward goals for data taking on 2015

- Direct Photon x-section & A_N at pT>2.0GeV (FMS + Pre-shower)
- Pi0 A_N Jetty vs Isolated :

pp vs pA(p+Au, p+Al), diffractive vs non-diffractive (Roman Pots)

Study di-electron channel (J/psi) towards DY