

James L. Drachenberg

Valparaiso University for the STAR Collaboration

Lake Winter Louise Institute

Fundamental Interactions in Particle Physics, Alberta, Canada

February 22, 2014

OUTLINE

- Introduction
- RHIC and the STAR detector
- Jets and Di-hadrons at $\sqrt{s} = 200 \text{ GeV}$
- Jets at $\sqrt{s} = 500 \text{ GeV}$
- Summary

Contributions to Proton Spin Structure

Solenoidal Tracker at RHIC

Transverse Single-spin Asymmetries from Inclusive Hadrons

$$A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

 $d\sigma^{\uparrow(\downarrow)}$ – cross section for *leftward* scattering when beam polarization is spin-**up**(down)

```
Collinear pQCD at leading twist
predicts very small A_N
```

Kane, Pumplin, Repko, PRL 41, 1689 (1978)

Sizeable A_N at forward pseudorapidity measured across a large range of \sqrt{s}

Measurements at RHIC in region where NLO pQCD cross-section provides a reasonable description of the data

→ Go beyond collinear pQCD at leading twist

Mechanisms for Transverse Single-spin Asymmetries

Y. Koike, RSC Discussion (2004)

Twist-3 mechanism: Asymmetry from multi-parton correlation functions

e.g. Qiu and Sterman, PRL 67, 2264 (1991); PRD 59, 014004 (1998)

Correlators closely related to k_{T} moments of TMD's

Boer, Mulders, Pijlman, NPB 667, 201 (2003)

Mechanisms for Transverse Single-spin Asymmetries

Inclusive hadron asymmetries: **Unable to islolate contributions Sivers, Collins, twist-3** ~ $sin(\phi_S)$ ϕ_S —angle between spin and event plane

Mechanisms for Transverse Single-spin Asymmetries

Separate Sivers and Collins:

Go beyond inclusive production - e.g. Jets, correlations, direct photonsSivers ~ $sin(\phi_S)$ Collins ~ $sin(\phi_S - \phi_h)$ ϕ_S —angle between spin and event plane ϕ_h —angle of hadron around jet axis

STAR Transverse Asymmetries from Jet Production

STAR Transverse Asymmetries from Di-hadrons

STAR data from 2006 at $\sqrt{s} = 200$ GeV: Sign of *non-zero di-hadron asymmetries* for charged pions at central pseudorapidity

STAR Transverse Asymmetries from Di-hadrons

STAR data from 2006 at $\sqrt{s} = 200$ GeV: Sign of *non-zero di-hadron asymmetries* for charged pions at central pseudorapidity

Non-zero Collins + Di-hadron Asymemtries → Access to transversity in p+p!

STAR Transverse Asymmetries from Jet Production

2012 STAR data provide opportunity for *higher precision* and greatly reduced systematic uncertainties at $\sqrt{s} = 200 \text{ GeV}$ analysis well underway

STAR Transverse Asymmetries from Jet Production

2012 STAR data provide opportunity for *higher precision* and greatly reduced systematic uncertainties at $\sqrt{s} = 200 \text{ GeV}$ analysis well underway

2011 STAR data provide opportunity for first measurements of central pseudorapidity inclusive jet asymmetries at √s = 500 GeV
 → Increased sensitivity to gluonic subprocesses

Various contributions to polarized $jet + \pi$ cross section (TMD approach)

$$d\sigma(\phi_{S},\phi_{h}) - d\sigma(\phi_{S} + \pi,\phi_{h}) \sim d\Delta\sigma_{0}\sin\phi_{S}$$

+
$$d\Delta\sigma_{1}^{-}\sin(\phi_{S} - \phi_{h}) + d\Delta\sigma_{1}^{+}\sin(\phi_{S} + \phi_{h})$$

+
$$d\Delta\sigma_{2}^{-}\sin(\phi_{S} - 2\phi_{h}) + d\Delta\sigma_{2}^{+}\sin(\phi_{S} + 2\phi_{h})$$

Phys. Rev. D 83, 034021 (2011); arXiv:1307.4880

Various contributions to polarized $jet + \pi$ cross section (TMD approach)

$$d\sigma(\phi_{S},\phi_{h}) - d\sigma(\phi_{S} + \pi,\phi_{h}) \sim d\Delta\sigma_{0}\sin\phi_{S}$$
$$+ d\Delta\sigma_{1}^{-}\sin(\phi_{S} - \phi_{h}) + d\Delta\sigma_{1}^{+}\sin(\phi_{S} + \phi_{h})$$
$$+ d\Delta\sigma_{2}^{-}\sin(\phi_{S} - 2\phi_{h}) + d\Delta\sigma_{2}^{+}\sin(\phi_{S} + 2\phi_{h})$$

Phys. Rev. D 83, 034021 (2011); arXiv:1307.4880

Negligible under *maximized* scenario!

Various contributions to polarized $jet + \pi$ cross section (TMD approach)

$$d\sigma(\phi_{S},\phi_{h}) - d\sigma(\phi_{S} + \pi,\phi_{h}) \sim d\Delta\sigma_{0} \sin\phi_{S}$$

$$+ d\Delta\sigma_{1}^{-} \sin(\phi_{S} - \phi_{h}) + d\Delta\sigma_{1}^{+} \sin(\phi_{S} + \phi_{h})$$

$$+ d\Delta\sigma_{2}^{-} \sin(\phi_{S} - 2\phi_{h}) + d\Delta\sigma_{2}^{+} \sin(\phi_{S} + 2\phi_{h})$$
Phys. Rev. D 33, 034021 (2011);
arXiv:1307.4880
Collins-like'' asymmetry:
Sensitive to linearly polarized gluons
Completely unconstrained!
Gluon helicity density matrix

$$\rho = \frac{1}{2} \begin{pmatrix} 1 + P_{circ} & -P_{lin}e^{-2i\phi} \\ -P_{lin}e^{2i\phi} & 1 - P_{circ} \end{pmatrix}$$
Off-diagonal terms related to linear
polarization in (xy) plane at angle ϕ to x-axis
Phys. Rev. D 73, 014020 (2006)

Sivers Asymmetries at 500 GeV

Collins Asymmetries at 500 GeV

Present data do not have sufficient statistics at high-z to observe Collins asymmetry of order 1%

Collins-like Asymmetries at 500 GeV

Model predictions shown for "maximized" effect, saturated to positivity bound Until now, Collins-like asymmetries completely unconstrained → Sensitive to linearly polarized gluons

• STAR measurements play a vital role in understanding nucleon spin structure

- STAR measurements play a vital role in understanding nucleon spin structure
- Active program in proton helicity structure: ΔG , $\Delta \bar{u}$, etc.

- STAR measurements play a vital role in understanding nucleon spin structure
- Active program in proton helicity structure: ΔG , $\Delta \bar{u}$, etc.
- Transversity and transverse-polarization phenomena

- STAR measurements play a vital role in understanding nucleon spin structure
- Active program in proton helicity structure: ΔG , $\Delta \bar{u}$, etc.
- Transversity and transverse-polarization phenomena
 - First signs of transversity at RHIC through inclusive jet and dihadron asymmetries

- STAR measurements play a vital role in understanding nucleon spin structure
- Active program in proton helicity structure: ΔG , $\Delta \bar{u}$, etc.
- Transversity and transverse-polarization phenomena
 - First signs of transversity at RHIC through inclusive jet and dihadron asymmetries
 - First investigation of transverse single-spin asymmetries in inclusive jets at central pseudorapidity and $\sqrt{s} = 500$ GeV
 - First ever measurement of "Collins-like" effect from linearly polarized gluons
 - Stage set for analysis of A_{UT}-moment evolution from 200 GeV to 500 GeV

- STAR measurements play a vital role in understanding nucleon spin structure
- Active program in proton helicity structure: ΔG , $\Delta \bar{u}$, etc.
- Transversity and transverse-polarization phenomena
 - First signs of transversity at RHIC through inclusive jet and dihadron asymmetries
 - First investigation of transverse single-spin asymmetries in inclusive jets at central pseudorapidity and $\sqrt{s} = 500$ GeV
 - First ever measurement of "Collins-like" effect from linearly polarized gluons
 - Stage set for analysis of A_{UT}-moment evolution from 200 GeV to 500 GeV
 - Analyses underway of Collins and IFF from 2012 run
 → higher statistical precision and reduced systematics

Back-up Slides

Inclusive Hadron Production at STAR

Inclusive π^0 production at $\sqrt{s} = 200$ GeV measured over three ranges of pseudorapidity at STAR

All in agreement with NLO pQCD predictions (DSS Frag. Func.)

 \rightarrow Important benchmark for asymmetry studies

(Inclusive jet cross section at 200 GeV also found in agreement with NLO pQCD) PRL 97, 252001 (2006)

Probing Gluon Polarization with Inclusive Hadrons

 A_{LL} for Inclusive π^0 production at $\sqrt{s} = 200$ GeV measured over three ranges of pseudorapidity at STAR

- Complementary to STAR jet measurements
- Expect A_{LL} to decrease with increasing pseudorapididty
- Current statistics dominated by 2005/2006 datasets
- Higher-statistics datasets under investigation

STAR Longitudinal Asymmetries from Inclusive Hadrons

- STAR measured A_{LL} for inclusive charged pions during 2005
- $A_{LL}(\pi^+) A_{LL}(\pi)$ is sensitive to the sign of ΔG
- Difficult to trigger on charged pions
- Used the E/M calorimeter jet patch trigger as a surrogate
 → significant trigger bias (dominates syst. error band)

STAR Longitudinal Asymmetries from Inclusive Hadrons

measure these

- Making lemons into lemonade
 → Beat the trigger bias by using it
- Trigger and reconstruct a jet, then look for a charged pion on the opposite side
- Correlation measurement significantly increases the sensitivity of $A_{LL}(\pi^+)$

Probing Gluon Polarization with Inclusive Jets

- 0.06

<u>ㅎ</u> 0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

_∃0.06 ▼

GRSV-STD

GRSV-STD GRSV-ZERO

DSSV

GRSV-ZERO

DSSV 22+2% Uncert

2009 STAR Preliminary

 \sqrt{s} =200 GeV \vec{p} + \vec{p} \rightarrow jet+X $|\eta|<0.5$

±8.8% scale uncertainty

from polarization not shown

Particle Jet p_ [GeV/c]

20

Relative Luminosity Uncert

- 2009 $A_{LL} \rightarrow$ two pseudorapidity ranges
- **Forward jets (0.5 < η < 1):**
 - Larger fraction of q-g scattering with
 - Higher x quarks that are more polarized
 - Lower x gluons that are less polarized
 - Larger $|\cos(\theta^*)| \rightarrow$ reduced \hat{a}_{IL}
- A_{LL} falls between the predictions from DSSV and GRSV-STD
- First experimental evidence of **non-zero** $\Delta g(x)$ in range $0.05 \le x \le 0.2$

Recent Spin Results from STAR - Drachenberg

Global analysis with 2009 RHIC data

• **DSSV++** is a preliminary global analysis from the DSSV group that includes the 2009 RHIC A_{LL} data (STAR inclusive jets and PHENIX $\pi^{0'}$ s)

$$\int_{0.05}^{0.20} \Delta g(x, Q^2 = 10 \text{ GeV}^2) dx = 0.10_{-0.07}^{+0.06}$$

• First experimental evidence of **non-zero** $\Delta g(x)$ in range $0.05 \le x \le 0.2$

Probing Strange Quark Polarization with Hyperons

Outgoing Λ polarization is particularly sensitive to $\Delta \bar{s}$. Proof of principle measurement with 2005 data

Probing Strange Quark Polarization with Hyperons

Outgoing Λ polarization is particularly sensitive to $\Delta \bar{s}$ Proof of principle measurement with 2005 data Higher statistics (factor~4-5) with higher p_{τ} in 2009 data 2013 data provide opportunity for even higher precision

Probing Sea Quark Polarization with W[±]

 $A_{L}^{W^{-}} \sim \frac{\Delta \overline{u}(x_{1})d(x_{2}) - \Delta d(x_{1})\overline{u}(x_{2})}{\overline{u}(x_{1})d(x_{2}) + d(x_{1})\overline{u}(x_{2})}$

- *A_L*(W⁻) systematically larger than DSSV
- → Enhancement at $\eta < 0$ sensitive to $\Delta \bar{u}$
 - A_L(W⁺) consistent with DSSV
- Systematics well under control for $|\eta_e| < 1.4$

Probing Sea Quark Polarization with W[±]

STAR has measured sizeable transverse single-spin asymmetries for forward π^0 and η production **At high-** x_F , η **asymmetry may be larger than that of** π^0 Asymmetries at intermediate pseudorapidity consistent with zero

Above results mostly from 2006 (6.8 pb⁻¹ at 55% polarization)

STAR data from PRL 101, 222001 (2008)

Current models based on fits to SIDIS and e⁺e⁻:

- "The Collins effect...is not sufficient for the medium-large x_F range of STAR data, x_F ≥ 0.3"
- "...the Sivers effect alone might in principle be able to explain...almost the full amount of STAR π^0 data on A_N "

Theoretical questions remain about applicability to *p*+*p* data of Sivers extractions from SIDIS (*e.g. Kang et al., PRD 83, 094001 (2011*))

Despite expectation of $1/p_T$ scaling, STAR data from 2003 to 2008 show no sign of $1/p_T$ fall-off out to $p_T \sim 5$ GeV/c

 \rightarrow possible hint of Collins+Sivers effect?

Twist-3 models also see flat p_T dependence out to p_T ~ 15 GeV/c e.g. Kanazawa and Koike, PRD 83, 114024 (2011)

Recent data from 2012 suggest that asymmetries for pions with additional near-side energy deposit have *lower asymmetries than those of more isolated pions*

STAR data from 2012 at $\sqrt{s} = 200$ GeV: asymmetries for pions with additional near-side pion have

lower asymmetries than those with away-side or mid-range pion

→ In both $\sqrt{s} = 200$ and 500 GeV isolated pions show higher asymmetry than jet-like pions Forward neutral-energy jet analysis of 2011 ongoing (M. Mondal, GHP2013)

STAR Transverse Asymmetries at Central Pseudorapidity

Observed di-jet asymmetries much smaller than observed at SIDIS → Cancellation of initial vs. final state interactions, u vs. d quark effects, and small gluon Sivers effect?

Sivers Asymmetries at 500 GeV

Recent Spin Results from STAR - Drachenberg

Collins-like Asymmetries at 500 GeV

Collins-like Asymmetries at 500 GeV

Similarly, no large effect observed as a function of jet p_T Measured asymmetries shown for $-1 < \eta < 1$ in z-bins

Collins Asymmetries

Present model predictions expect negligible effects for A_{UT} vs. j_T integrated over z > 0.1

Measured asymmetries shown for $x_F > 0$ (i.e. $0 < \eta_{jet} < 1$) in z-bins No sign of non-zero asymmetry as a function of j_T or jet p_T Similarly, no sign of positive effect for backward region ($x_F < 0$), as expected

STAR Transverse Asymmetries from Di-hadrons

Non-zero signal for di-hadron transverse singlespin asymmetries in 2006 data → Inform transversity at higher x, Q²?

STAR Transverse Asymmetries from Di-hadrons

Non-zero signal for di-hadron transverse singlespin asymmetries in 2006 data → Inform transversity at higher x, Q²?

2012+15: opportunity for much higher precision

Analysis of 2012 data underway

Jet Reconstruction in STAR

Asymmetry Measurements

Transverse Asymmetries from Jet Production

Asymmetry moments sensitive to various contributions (analogous moments sensitive to gluon scattering)

 A_{UT} – Transverse single-spin asymmetry (also written A_N)

Transverse Momentum Dependent (TMD) Approach

Terms in Numerator of TMD SSA for an scattering	English Names	Modulate
$\Delta^{\!N} f_{a/A\uparrow} \bullet f_{b/B} \bullet D_{\pi/q}$	Sivers • PDF • FF	$\sin(\varphi_{s_A})$
$h_1^a \bullet \Delta^{\!\scriptscriptstyle N} f_{b \uparrow / B} \bullet D_{\pi / q}$	Transversity • Boer-Mulders • FF	$\sin(\varphi_{S_A})$
$h_{1T}^{\perp a} \bullet \Delta^{N} f_{b\dagger/B} \bullet D_{\pi/a}$	Pretzelocity • Boer-Mulders • FF	$\sin(\varphi_{S_A})$
$h_1^a \bullet f_{b/B} \bullet \Delta D_{\pi/q\uparrow}$	Transversity•PDF •Collins	$\sin(\varphi_{S_A}-\varphi_{\pi})$
$\Delta f_{a/A\uparrow}^{N} \bullet \Delta^{N} f_{b\uparrow/B} \bullet \Delta D_{\pi/q\uparrow}$	Sivers • Boer-Mulders • Collins	$\sin(\varphi_{S_A}-\varphi_{\pi})$
$h_{1T}^{\scriptscriptstyle ota} ullet f_{_{b/B}} ullet \Delta D_{_{\pi/q\uparrow}}$	Pretzelocity•PDF•Collins	$\sin\!\!\left(\varphi_{S_A}+\varphi_{\pi}\right)$
$\Delta f_{a/A\uparrow}^N \bullet \Delta^N f_{b\uparrow/B} \bullet \Delta D_{\pi/q\uparrow}$	Sivers•Boer-Mulders•Collins	$\sin(\varphi_{S_A} + \varphi_{\pi})$

SIDIS Results: Sivers and Collins Asymmetries

Global Analysis

- Factorized functional form for Collins F.F. and transversity
- Simultaneous extraction of Collins F.F. and transversity
 → tune to data from HERMES, COMPASS, and Belle

Opportunities with p+p:

Expanded kinematics? Tests of Q²? Evolution? Universality?