
D⁰ Measurements in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ at STAR using the Silicon Inner Tracker

Sarah LaPointe Wayne State University

For further details see poster 31⁻

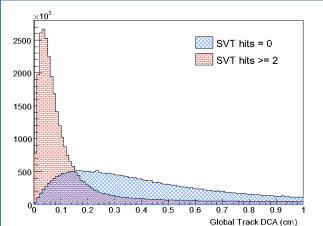
D⁰ Reconstruction

- $D^0 \rightarrow K^- \pi^+$ Full hadronic D^0 reconstruction through
- $c\tau = 123 \,\mu m$ identified displaced vertices.

Silicon Inner Tracker

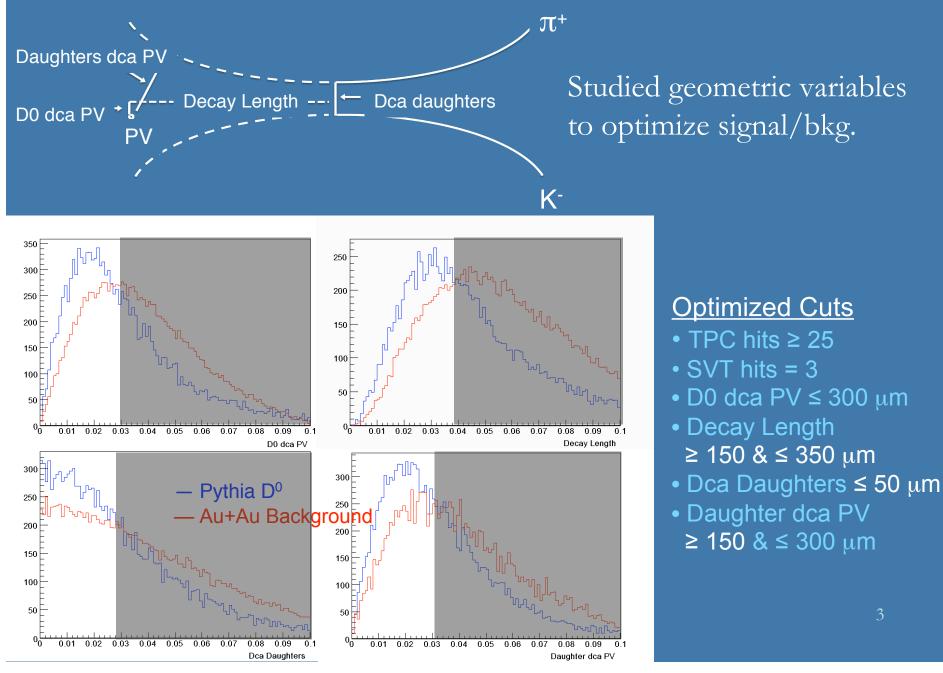
- Composed of a SVT and SSD

SVT


3 barrels w/ 2π coverage between r = 5 and 15 cm **SSD** 1 layer located at r = 23 cm

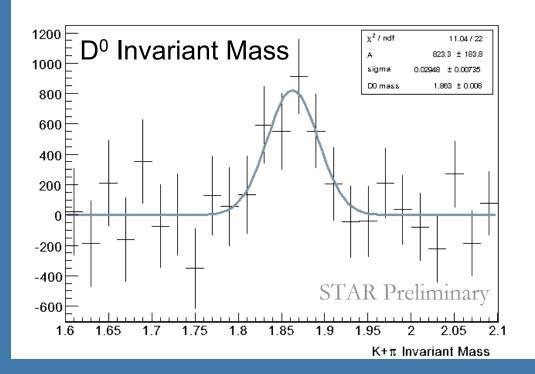
Detector Performance

- Position resolution $\sigma \sim 30 \ \mu m$ Order of magnitude improvement from TPC alone
- Impact parameter $\sigma = 210 \ \mu m \ (p_T = 1 \ GeV/c)$
 - f: 15 improvement from TPC alone



Sarah LaPointe

Geometrical Variable Distributions



Results

Preliminary analysis done using 17M of the 47M run 7 Au+Au events

signal ~ 3000 signal/bkg = 0.006 $\sigma = s/\sqrt{(s+b)} = 4.5$

Order of magnitude improvement of signal/bkg with respect to TPC alone analysis

The estimated D^0+D^0 bar signal for the entire data set ~ 15k

Sarah LaPointe

Quark Matter 2009, Poster 311

Outlook and Plans

- First D⁰ measurement in heavy ion collisions using displaced vertices
- Unambiguous determination of the D- and B- meson contribution to the non-photonic electron spectrum
- Projected p_T reach of 4 GeV/c

<u>Physics</u>

- v_2 optimize analysis based on the purity of the sample
- R_{CP} optimize for greater statistics
- Cross check with other background subtraction methods
- Improve s/b based on further optimization

A successful determination of v_2 and R_{CP} will not only provide insight of the interaction of charm with the medium but will be a good reference to the results that will come from the HFT in STAR and the VTX in PHENIX

For further details see poster 311

Sarah LaPointe

Quark Matter 2009, Poster 311