Longitudinal and Transverse Spin Transfers of Λ and $\bar{\Lambda}$ Hyperons in polarized p－p Collisions at $\sqrt{s}=200 \mathrm{GeV}$ at RHIC－STAR

Yi Yu（于毅 ），for the STAR Collaboration山东大学

于毅，山东大学

Outline

－Motivation
\downarrow Introduction to RHIC \＆STAR
\checkmark Reconstructions of Λ and $\bar{\Lambda}$
\uparrow Measurements of Longitudinal Spin Transfer，$D_{L L}$
\downarrow Measurements of Transverse Spin Transfer，$D_{T T}$
\uparrow Summary

Motivation

\downarrow Nucleon Spin Structure（ from DIS and p－p ）

－Spin sum rule：$\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q, g}$ ．
－Valence quark helicity distributions are well known．

－Poor knowledge on sea quarks，especially for strange quark．

\downarrow Why choose Λ ？

－The spin of Λ is expected to be carried mostly by its constituent strange quark．
－The weak decay of Λ provides a way to measure its polarization．
$d N \sim\left(1+\alpha P_{\Lambda} \cos \theta^{*}\right) d \cos \theta^{*}$
α ：weak decay parameter of Λ
P_{Λ} ：the polarization of Λ

Longitudinal spin transfer $D_{L L}$ in p－p collisions

$\downarrow D_{L L}$ is defined as the cross－section asymmetry

$$
\begin{aligned}
& D_{L L}^{\Lambda}=\frac{d \sigma\left(p^{+} p \rightarrow \Lambda^{+} X\right)-d \sigma\left(p^{+} p \rightarrow \Lambda^{-} X\right)}{d \sigma\left(p^{+} p \rightarrow \Lambda^{+} X\right)+d \sigma\left(p^{+} p \rightarrow \Lambda^{-} X\right)}=\frac{d \Delta \sigma^{\Lambda}}{d \sigma^{\Lambda}} \\
& d \Delta \sigma^{\Lambda}=\underset{\text { helicity distribution }}{\sum \sum d x_{a} d x_{b} d z \Delta f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right) \Delta \sigma(a b \rightarrow c d) \Delta D^{\Lambda}(z)} \\
& \Delta f_{a}\left(x_{a}\right)=f_{a}^{+}\left(x_{a}\right)-f_{a}^{-}\left(x_{a}\right)
\end{aligned}
$$

$\checkmark \Lambda D_{L L}$ can shed light on both helicity distributions of $s(\bar{s})$ and the polarized fragmentation functions（ FF ）．

Prediction of $D_{L L}$ at RHIC

D．de Florian，M．Stratmann，and W．Vogelsang， Phys．Rev．Lett．81， 4 （1998）．

Transverse spin transfer $D_{T T}$ in p－p collisions

$\downarrow D_{T T}$ is defined as the cross－section asymmetry

$$
\begin{aligned}
& D_{T T}^{\Lambda}=\frac{d \sigma\left(p^{\uparrow} p \rightarrow \Lambda^{\uparrow} X\right)-d \sigma\left(p^{\uparrow} p \rightarrow \Lambda^{\downarrow} X\right)}{d \sigma\left(p^{\uparrow} p \rightarrow \Lambda^{\uparrow} X\right)+d \sigma\left(p^{\uparrow} p \rightarrow \Lambda^{\downarrow} X\right)}=\frac{d \delta \sigma^{\Lambda}}{d \sigma^{\Lambda}} \\
& d \delta \sigma^{\Lambda}=\sum \int d x_{a} d x_{b} d z \delta \delta_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right) \delta \sigma(a b \rightarrow c d) \delta D^{\Lambda}(z) \\
& \text { transversity distribution pQCD calculable polarized FF }
\end{aligned}
$$

Little experimental constraint of the transversity．

$$
\delta f_{a}\left(x_{a}\right)=f_{a}^{\uparrow}\left(x_{a}\right)-f_{a}^{\downarrow}\left(x_{a}\right)
$$

No constraint for strange quark

Kang，Z．－B．，Prokudin，A．，Sun，P．\＆Yuan，F．Phys．Rev．D 93， 014009 （2016）．

$\downarrow \Lambda D_{T T}$ can shed light on both transversity distribution of $s(\bar{s})$ and the polarized fragmentation functions（ FF ）．

Relativistic Heavy Ion Collider

\uparrow RHIC as a polarized p－p collider
－The world＇s first and only polarized p－p collider．
－Collides both transversely and longitudinally polarized proton beams at $\sqrt{s}=200$ and $500 / 510 \mathrm{GeV}$ ．
－Data sets in 2015

	$\sqrt{s}(\mathrm{GeV})$	$L_{\text {int }}\left(p b^{-1}\right)$	$P_{\text {beam }}$
Longitudinal	200	50	$52 \% / 56 \%$
Transverse	200	52	$57 \% / 57 \%$

Solenoidal Tracker At RHIC

Reconstruction of Λ and $\bar{\Lambda}$

\downarrow Apply a set of topological cuts to reduce the background （ below 10\％）．
$\Lambda \rightarrow p+\pi^{-}$
$\bar{\Lambda} \rightarrow \bar{p}+\pi^{+}$

\downarrow Side－band method is used to estimate the residual background．
\uparrow Require hyperons to be associated with a jet．${ }_{\phi}$
－Reconstruct jets with anti－k_{T} algorithm with $R=0.6$ ．
－$\Delta R=\sqrt{\left(\eta_{\Lambda}-\eta_{j e t}\right)^{2}+\left(\phi_{\Lambda}-\phi_{j e t}\right)^{2}}<0.6$
－Jet axis is used to determine the transverse polarization direction．

Measurements of $D_{L L}$

$\star D_{L L}$ is measured through the asymmetry of the Λ yields with different beam helicities in small $\cos \theta^{*}$ bins

$$
D_{L L}=\frac{1}{\alpha P_{\text {beam }}<\cos \theta^{*}>} \frac{N^{+}-R N^{-}}{N^{+}+R N^{-}} \quad \text { Acceptance canceled }
$$

－$N^{+(-)}$are the Λ yields with positive and negative beam helicities，respectively．
－R is the relative luminosity measured by the VPD．
－$\alpha=0.732$ is the decay parameter of Λ hyperon．
－$P_{\text {beam }}$ is the beam polarization．
－$\delta_{L L}$ of K_{S}^{0} as a null check．
－Same method as $D_{L L}$ measurement，with an artificial decay parameter $\alpha=1$ ．
－Results are consistent with zero as expected．

Adam，J．et al．［STAR Collaboration］，Phys．Rev．D 98， 032011 （2018）．

Previous result with STAR 2009 data

－Previous measurement with 2009 data
Adam，J．et al．［STAR Collaboration］，Phys．Rev．D 98， 112009 （2018）．

－The results are consistent with zero
－In agreement with several models
\downarrow Theoretical studies，when fit to data，show indications of asymmetry of strange quark and anti－quark polarization

X．N．Liu，B．Q．Ma．Eur．Phys．J．C 10 （2019）．

（a）Longitudinal spin transfer to Λ ．

（b）Longitudinal spin transfer to $\bar{\Lambda}$ ．

Coefficient	Value	Δs	$\Delta \bar{s}$	$\chi_{\text {min }}^{2}$
α_{1}	-1.20 ± 1.31	-0.014 ± 0.015		0.37
α_{2}	-0.24 ± 0.49		-0.003 ± 0.005	2.48

New $D_{L L}$ results with STAR 2015 data

$\downarrow D_{L L}$ as a function of hyperon p_{T} ，with small offset applied for better visibility．
－The results are the most precise measurements to date with twice the statistics of the 2009 data set．
\downarrow The hyperon p_{T} range is extended up to $7 \mathrm{GeV} / \mathrm{c}$ ．
\checkmark Results show consistency between Λ and $\bar{\Lambda}$ ．
\downarrow The data are also in agreement with various models within uncertainties．

For model calculation see

D．de Florian，M．Stratmann，and W．Vogelsang，Phys．Rev．Lett．81， 4 （1998）．

Measurement of $D_{T T}$

$\downarrow D_{T T}$ measures the spin transfer to the final state polarization along the polarization direction of outgoing quark．
－Jet axis is required to determine the transverse polarization direction．

－The results are consistent with zero as expected．

Previous result with STAR 2012 data

Adam，J．et al．［STAR Collaboration］．Phys．Rev．D 98， 091103 （2018）．

－First measurement on the $D_{T T}$
－Hyperon p_{T} range is up to $7 \mathrm{GeV} / \mathrm{c}$
－The results are consistent with the model prediction．

New $D_{T T}$ results with STAR 2015 data

$\downarrow D_{T T}$ as a function of hyperon p_{T} ，with small offset applied for better visibility．
\downarrow The new results have a factor of $\sim \sqrt{2}$ improvement in statistical precision．
\uparrow The results are consistent with the model prediction．
\uparrow Indicate small transversity distributions and／or small polarized FF．

Summary

＊The measurements of $D_{L L}$ and $D_{T T}$ in the polarized p－p collisions can provide insights into the polarized PDFs for strange quark and also polarized FF．
－Polarized p－p data taken in 2015 at STAR provide about two times the statistics as compared to previous measurements．
－New results are consistent with previous measurements and also consistent with zero， which indicate small polarized PDFs for strange quark and／or polarized FF．
＊STAR forward detector upgrade will enable Λ measurements in the forward pseudo－ rapidity region（ $2.5<\eta<4$ ）．More transversely polarized p－p collisions will be collected in 2022 at 510 GeV and in 2024 at 200 GeV ．

