

The 14th Workshop on QCD Phase Transition and Relativistic Heavy-Ion Physics (QPT 2021)

Longitudinal and Transverse Spin Transfers of Λ and $\overline{\Lambda}$ Hyperons in polarized p-p Collisions at $\sqrt{s} = 200$ GeV at RHIC-STAR

Supported in part by J.S. DEPARTMENT OF Office of ENERGY Science

Yi Yu (于毅), for the STAR Collaboration 山东大学

Outline

- Motivation
- Introduction to RHIC & STAR
- + Reconstructions of Λ and Λ
- + Measurements of Longitudinal Spin Transfer, D_{LL}
- + Measurements of Transverse Spin Transfer, D_{TT}
- Summary

Motivation

Nucleon Spin Structure (from DIS and p-p)

- Spin sum rule: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$.
- Valence quark helicity distributions are well known. ullet
- Poor knowledge on sea quarks, especially for strange quark. ullet

Why choose Λ ?

- The spin of Λ is expected to be carried mostly by its constituent strange quark.
- The weak decay of Λ provides a way to measure its polarization. ullet

$$dN \sim (1 + \alpha P_{\Lambda} \cos\theta^*) d\cos\theta^*$$

 α : weak decay parameter of Λ

 P_{Λ} : the polarization of Λ

NNPDFpol1.1, Nucl. Phys. B887,276 (2014)

 ${\cal \pi}$

Longitudinal spin transfer D_{II} in p-p collisions

 \bullet D_{LL} is defined as the **cross-section asymmetry**

$$D_{LL}^{\Lambda} = \frac{d\sigma(p^+p \to \Lambda^+X) - d\sigma(p^+p \to \Lambda^-X)}{d\sigma(p^+p \to \Lambda^+X) + d\sigma(p^+p \to \Lambda^-X)} = \frac{d\Delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$$
$$d\Delta\sigma^{\Lambda} = \sum \int dx_a dx_b dz \Delta f_a(x_a) f_b(x_b) \Delta\sigma(ab \to cd) \Delta D^{\Lambda}(z)$$
helicity distribution pQCD calculable polariz

 $\rightarrow \Lambda D_{LL}$ can shed light on both helicity distributions of $s(\bar{s})$ and the polarized fragmentation functions (FF).

D. de Florian, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 81, 4 (1998).

Transverse spin transfer D_{TT} **in p-p collisions**

 \bullet D_{TT} is defined as the cross-section asymmetry

 $\bigstar \Lambda D_{TT}$ can shed light on both transversity distribution of $s(\bar{s})$ and the **polarized fragmentation functions (FF)**.

Relativistic Heavy Ion Collider

RHIC as a polarized p-p collider

- The world's first and only polarized p-p collider.
- Collides both transversely and longitudinally polarized proton beams at $\sqrt{s}=200$ and 500/510 GeV.

Data sets in 2015

	$\sqrt{s} (GeV)$	$L_{int}(pb^{-1})$	P _{beam}
Longitudinal	200	50	52% / 56%
Transverse	200	52	57% / 57%

Solenoidal Tracker At RHIC

Relevant detectors for the D_{LL} and D_{TT} measurements

Time Projection Chamber (TPC)

- $|\eta| < 1.3$ and $0 \le \phi \le 2\pi$.
- Tracking and PID.

Electromagnetic Colorimeter (EMC)

- Barrel EMC (BEMC): $|\eta| < 1.0$ and $0 \le \phi \le 2\pi$.
- Endcap EMC (EEMC): $1.086 < \eta < 2.0$ and $0 \le \phi \le 2\pi$.
- Jet reconstruction, direct photon ...
- Can serve as the trigger detectors.

Time of Flight Detector (TOF)

- $|\eta| < 1.0$ and $0 \le \phi \le 2\pi$.
- PID.

Reconstruction of Λ and Λ

- Apply a set of topological cuts to reduce the background. below 10%).
- Side-band method is used to estimate the residual background.
- Require hyperons to be associated with a jet. #
 - Reconstruct jets with $anti k_T$ algorithm with R = 0.6.

•
$$\Delta R = \sqrt{(\eta_{\Lambda} - \eta_{jet})^2 + (\phi_{\Lambda} - \phi_{jet})^2} < 0.6$$

Jet axis is used to determine the transverse polarization direction. \bullet

Measurements of D_{II}

+ D_{LL} is measured through the asymmetry of the Λ yields with different beam helicities in small $cos\theta^*$ bins

- $N^{+(-)}$ are the Λ yields with positive and negative beam helicities, respectively.
- *R* is the relative luminosity measured by the VPD.
- $\alpha = 0.732$ is the decay parameter of Λ hyperon.
- *P*_{beam} is the beam polarization.

+ δ_{LL} of K_S^0 as a null check.

- Same method as D_{LL} measurement, with an artificial decay parameter $\alpha = 1$. •
- Results are consistent with zero as expected. \bullet

eptance canceled

Previous result with STAR 2009 data

Previous measurement with 2009 data

Adam, J. et al. [STAR Collaboration], Phys. Rev. D 98, 112009 (2018).

• The results are consistent with zero

• In agreement with several models

Theoretical studies, when fit to data, show indications of asymmetry of strange quark and anti-quark polarization

X.N. Liu, B.Q. Ma. *Eur. Phys. J.* C 10 (2019).

New D_{II} results with STAR 2015 data

- \bullet D_{LL} as a function of hyperon p_T , with small offset applied for better visibility.
- The results are the most precise measurements to date with twice the statistics of the 2009 data set.
 - The hyperon p_T range is extended up to 7 GeV/c.
- \bullet Results show consistency between Λ and Λ .
- The data are also in agreement with various models within uncertainties.

For model calculation see D. de Florian, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 81, 4 (1998).

Measurement of D_{TT}

- \bullet D_{TT} measures the spin transfer to the final state polarization along the polarization direction of outgoing quark.
- + Jet axis is required to determine the transverse polarization direction.

 $\bullet D_{TT}$ is measured with cross-ratio method in small $cos\theta^*$ bins.

$$D_{TT} = \frac{1}{\alpha P_{beam} < \cos\theta^* > \frac{\sqrt{N^{\uparrow}(\cos\theta^*)N^{\downarrow}(-\cos\theta^*)} - \sqrt{N^{\uparrow}(-\cos\theta^*)N^{\downarrow}(-\cos\theta$$

The relative luminosity and the acceptance are both canceled. $\bullet \delta_{TT}$ of K_S^0 as a null check.

• The results are consistent with zero as expected.

Adam, J. et al. [STAR Collaboration], Phys. Rev. D 98, 091103 (2018).

Previous result with STAR 2012 data

Adam, J. et al. [STAR Collaboration]. Phys. Rev. D 98, 091103 (2018).

- First measurement on the D_{TT}
- Hyperon p_T range is up to 7 GeV/c
- The results are consistent with the model prediction.

New D_{TT} results with STAR 2015 data

2021-07-28

- \bullet D_{TT} as a function of hyperon p_T , with small offset applied for better visibility.
- + The new results have a factor of $\sim \sqrt{2}$ improvement in statistical precision.
- The results are consistent with the model prediction.
- Indicate small transversity distributions and/or small polarized FF.

Summary

- + The measurements of D_{LL} and D_{TT} in the polarized p-p collisions can provide insights into the polarized PDFs for strange quark and also polarized FF.
- Polarized p-p data taken in 2015 at STAR provide about two times the statistics as compared to previous measurements.
- New results are consistent with previous measurements and also consistent with zero, which indicate small polarized PDFs for strange quark and/or polarized FF.
- STAR forward detector upgrade will enable Λ measurements in the forward pseudorapidity region (2.5 < η < 4). More transversely polarized p-p collisions will be collected in 2022 at 510 GeV and in 2024 at 200 GeV.

