- Central exclusive production of $\pi^+\pi^-$, K^+K^-
- and $p\bar{p}$ pairs with forward protons measured in
- Roman Pot detectors in proton-proton collisions
- at $\sqrt{s} = 200 \text{ GeV}$ with the STAR detector

Leszek Adamczyk for the STAR Collaboration

6 Abstract

We present results on the Central Exclusive Production of charged particle pairs h^+h^- ($h=\pi,K,p$) obtained in the STAR experiment at RHIC in proton-proton collisions at center-of-mass energy of $\sqrt{s}=200$ GeV. All final-state particles of the process $pp\to p'+h^+h^-+p'$ were reconstructed, including forward-scattered protons detected in the Roman Pot system. As a result, the Double Pomeron Exchange (DPE) events were selected and the non-exclusive backgrounds were efficiently rejected.

Differential fiducial cross sections were measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. The measured cross sections were compared to phenomenological predictions based on the DPE model. Structures observed in the mass spectra of $\pi^+\pi^-$ and K^+K^- pairs were found consistent with the DPE model, while angular distributions of pions suggested a dominant spin-0 contribution to $\pi^+\pi^-$ production.

For $\pi^+\pi^-$ production, the fiducial cross section was extrapolated to the Lorentz-invariant region and was successfully modeled assuming the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$, and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of squared four-momentum transfers in proton vertices enabled extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.