

Determining Gluon Contribution to the Spin of a Proton using η Production at STAR

Alexis Lewis Valparaiso University For the STAR Collaboration Supported in part by

Office of Science

RHIC and STAR`

Relativistic Heavy Ion Collider

Solenoidal Tracker At RHIC ~

Background - Proton Spin

• Spin is the intrinsic angular Valence Quarks Sea Quarks momentum of a particle Quark pairs (quarks and Up and Down • The proton has spin 1/2 ħ antiquarks) Quarks are elementary particles which make up composite particles called hadrons (e.g. protons, neutrons, pions, etas) Gluon orbital Proton Gluon spin angular momentum (uud) \sim $\frac{1}{2}\hbar = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_q$ Quark spin Quark orbital ~30% angular momentum Gluons Mediates the strong nuclear force

Asymmetry (A_{LL})

- Using the number of the π^0 or η particles and the known polarization of the beams, we can calculate the asymmetry of π^0 and η production from different spin states of the protons
- The asymmetry formula:
 - Pb and Py are the polarization of the blue and yellow beams
 - N⁺⁺ and N⁺⁻ are the number of π^o or η in the respective spin state
 - R is the relative luminosity ratio
- If A_{LL} is nonzero, then there is a sensitivity to π° or η production from spin of the proton

 $A_{LL} = \frac{N^{++} - RN^{+-}}{P_{h}P_{v}(N^{++} + RN^{+-})}$

Spin is anti-aligned with momentum

Asymmetry is related to the gluon contribution to the spin of the proton

Invariant Mass

 The invariant mass of two photons (M_{γγ}) can be calculated from the energy and position of the photons

Invariant Mass

 $M_{\gamma\gamma}$

$$= (E_1 + E_2) \sqrt{1 - \left(\frac{E_1 - E_2}{E_1 + E_2}\right)^2 \sin\left(\frac{\theta}{2}\right)}$$

- The software package ROOT will take all of the invariant mass results and make a histogram
- The invariant mass plots help us identify particles and how many there are

Fitting the η Histogram

- η particles are massive (0.548 GeV/c²)
- They also produced less often than π^0 s
- A histogram is fit using:
 - a Gaussian function to represent the eta particles and,

$$f(x) = p_0 \cdot exp\left(-0.5\left(\frac{x-p_1}{p_2}\right)^2\right)$$

• a third order polynomial function to represent the background photon pairs

 $B = p_3 + p_4 x + p_5 x^2 + p_6 x^3$

- Integrating the signal function gives the total number of $\boldsymbol{\eta}$
- We look for three main things in this graph:
 - Mean mass value
 - Width of the invariant mass peak
 - Signal fraction

My Research

Run vs. Fill:

I studied η production from proton-proton collisions conducted at Brookhaven National Lab from the 2013 data set

- The data-collection window between a beam injection (into the ring for collision) and the subsequent beam dump is referred to as a "fill"
- A run is a period when STAR is taking data
- Breaks up data in manageable pieces

My Research

- I worked on the 2013 data set, which was longitudinally polarized at $\sqrt{s} = 510 \text{ GeV}$
- I studied the three characteristics of the η mass histogram
 - Mean, Width, and Signal Fraction
- I looked for data that could be deemed as outliers

η Invariant Mass vs. Fill Number

n Peak Width vs. Fill Number

9

η Signal Fraction vs. Fill Number

Signal fraction = Number of η s within 2 σ of the η peak (red) ÷ Total number of counts (black)

Summary

- QA was carried out on 2013 data at the fill level for the η particle
- This data will be used to select good fills for the next step in the analysis of the 2013 data set