Transverse Single Spin Asymmetry for Inclusive and Diffractive Electromagnetic Jets at Forward Rapidity in $p^\uparrow+p$ Collisions at $\sqrt{s}=200$ GeV and 510 GeV at STAR

Xilin Liang, for the STAR Collaboration

University of California, Riverside

DIS 2023 East Lansing, MI March 28, 2023

Supported in part by

Transverse Single-Spin Asymmetry (TSSA, A_N)

•
$$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

- pQCD predicts $A_N \sim \frac{m_q \alpha_s}{\sqrt{s}} \sim 0.001$
- Large A_N at forward region is observed in proton-proton collisions

• eg.
$$p^{\uparrow} + p \rightarrow \pi + X$$

References:

E.C. Aschenauer et al., arXiv:1602.03922

- (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)

Possible Mechanisms for TSSA

• TMDs framework:

Sivers effect: correlation between initial parton k_T and proton spin S_p

• Twist-3: Quark-gluon / gluon-gluon correlations and fragmentation functions.

Ref: J.W. Qiu and G. Sterman, Phys. Rev. Lett. 67 2264 (1991)

Indication of Large TSSA from Diffractive Process

- Previous analyses of A_N for forward π^0 and electromagnetic jets (EM-jets) in $p^\uparrow+p$ collisions at STAR
 - Inclusive π^0 A_N : Isolated π^0 has larger A_N than non-isolated π^0
 - Inclusive EM-jet A_N : Lower photon multiplicity EM-jets have larger A_N
- These indicate that there might be non-trivial contributions to the large A_N from diffractive processes

RHIC: Relativistic Heavy Ion Collider

- Located at Brookhaven National Laboratory (BNL) on Long Island, NY
- World's only polarized proton-proton collider with transverse and longitudinal polarization
- Wide range of collision
- STAR experiment is at one of the collision points at RHIC

The STAR Experiment

STAR sub-detectors used in measuring the A_N

- Calorimetry system: FMS
 - ullet Forward Meson Spectrometer (FMS): $2.6 < \eta < 4.2$, $\phi \in (0,2\pi)$
- Roman Pot (RP) are used to detect scattered protons.
- Triggering, determining vertex:
 - Beam-Beam Counter (BBC)
 - Vertex Position Detector (VPD)
 - Zero Degree Calorimeter (ZDC)

Datasets and Electromagnetic Jets (EM-jets)

Year	\sqrt{s} [GeV]	$\mathcal{L}\left[\mathit{pb}^{-1} ight]$	Polarization orientation	Polarization P [%]
2015	200	52	Transverse	57
2017	510	350	Transverse	55

- Inclusive and diffractive EM-jet A_N studies using 2015 and 2017 data
 - These are the currently available datasets with high luminosity and good beam polarization for FMS
- Electromagnetic jets (EM-jets) are jets that consist of only photons
 - FMS can detect photons, neutral pions, and eta mesons in the forward direction
 - Unable to detect charged hadrons at the forward region for these 2 datasets

Inclusive and Diffractive EM-jet A_N at Forward Rapidity using FMS

- Motivation:
- Explore potential sources of large A_N
- Characterize EM-jet A_N as a function of EM-jet p_T , energy and photon multiplicity
- Measure diffractive contributions to A_N in $p^{\uparrow} + p$ collisions

- Required to tag scattered proton(s) in Roman Pot

Only 1 proton track on FMS side (west side) and no proton track on the away side (east side).

(2) Only 1 proton track on FMS side (west side) and only 1 proton track on away side (east side).

EM-jet Reconstruction, Corrections and Event Selections

- ★ EM-jet reconstruction:
 - Only reconstructed FMS photon candidates as input for jet reconstruction: Anti- k_T algorithm with R = 0.7
 - Minimum EM-jet p_T requirement based on trigger threshold or fixed threshold depending on the dataset
- ★ Corrections for EM-jets based on simulation:
 - PYTHIA 6.4 Perugia 2012 with GEANT based STAR detector simulation
 - **1** EM-jet p_T is corrected for Underlying Event using off-axis cone method
 - EM-jet energy is corrected to the particle level based on the simulation
- ★ Additional event selections for diffractive processes:
 - RP track is required to be well reconstructed and within geometric acceptance.
 - Two acceptable scenarios for RP tracks based on the diffractive process channels:
 - Only 1 west side RP track allowed
 - 0 or only 1 east side RP track allowed
 - BBC hit cuts to reduce accidental coincidences
 - Energy sum cuts to reduce pile-up effect
 - Energy sum: E(west side RP track) + E(EM-jet)

EM-jet A_N Extraction Method

- The cross-ratio method is used to extract A_N for inclusive and diffractive processes
- This method takes advantage of detector azimuthal symmetry and cancels effects on detector acceptance and beam luminosity

$$A_{raw}(\phi) = PA_{N}cos(\phi) = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi + \pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi + \pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi + \pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi + \pi)}}$$

Detailed Investigations of Inclusive EM-jet A_N at Forward Rapidity at 200 GeV

- The EM-jet A_N decreases with increasing photon multiplicity
 - A_N is larger for the EM-jets consisting of 1 or 2 photons
 - A_N is smaller for EM-jets consisting of 4 or 5 photons
- A_N at x_F < 0 is consistent with 0
- The systematic uncertainties (boxes) mainly come from possible misidentification of the event categories

Inclusive EM-jet A_N at Forward Rapidity at 200 GeV

- A_N increases with x_F
- ullet EM-jets consisting of 1 or 2 photons have the strongest A_N
- EM-jets with 3 photons have non-zero A_N but smaller than that of 1-photon or 2-photon EM-jets
- EM-jets with at least 4 photons have significantly smaller A_N

Diffractive EM-jet A_N at Forward Rapidity at 200 GeV

- A non-zero A_N for $x_F > 0$ is observed with 3.3 σ significance for diffractive process at forward rapidity at 200 GeV
- Large A_N is observed in high x_F region

- A_N at $x_F < 0$ is consistent with 0
- Sign of A_N is negative.
 Theoretical inputs are needed to understand the different sign
- Systematic uncertainties (boxes) mainly come from cuts for reducing background events

Note 1: All red points are shifted -0.005 along x-axis Note 2: The rightmost point is for $0.3 < |x_F| < 0.4$

Inclusive EM-jet A_N projection

- Expect to have much more precise measurements with 510 GeV $p^{\uparrow} + p$ dataset recorded in 2017
- Allow to explore A_N more precisely at higher kinematic regions

Diffractive EM-jet A_N projection

• The 510 GeV $p^{\uparrow} + p$ dataset allows us to reduce the statistical uncertainty by more than a factor of 2 compared to the 200 GeV $p^{\uparrow} + p$ dataset

Note 1: All black points shifted 0.005 along x axis Note 2: All red points shifted -0.005 along x axis

Conclusion and Outlook

- ★ We study A_N for inclusive EM-jets with different jet substructures using the FMS at STAR in $p^{\uparrow} + p$ collisions at 200 GeV
 - EM-jet A_N increases with decreasing photon multiplicity and increasing x_F
- ★ We study A_N for diffractive EM-jets using the FMS at STAR in $p^{\uparrow} + p$ collisions at 200 GeV
 - A non-zero diffractive EM-jet A_N with negative sign for $x_F > 0$ is observed
 - ullet Sign of A_N is negative, which needs further theoretical study to understand
- ★ The analyses for inclusive and diffractive EM-jet A_N using the FMS at STAR in $p^{\uparrow} + p$ collisions at 510 GeV are in progress
 - High luminosity dataset from 2017 will significantly improve the measurements

Back up

Forward Meson Spectrometer (FMS)

- FMS can detect photons, neutral pions, and eta mesons in the forward direction
- $2.6 < \eta < 4.2$

- FMS consists of 1264 Lead-Glass cells with photomultiplier tubes (PMT) readout connected, separated into two regions
- Inner region (green) have smaller size cells than the outer region (red), which can provide better photon separation ability
- ullet All cells have ${\sim}18$ radiation length

Roman Pot (RP)

Inclusive and Diffractive EM-jet A_M at STAR

- Roman Pots (RP) are vessels which house the Silicon Strip Detector planes (SSDs). They are put close to the beam pipe
- RPs are able to detect and track slightly scattered protons close to beamline

- 2 sets of RP (inner and outer) on each side
- Each RP set contains a package above and below the beamline
- 4 SSDs per package (2 x-type and 2 y-type)

Underlying Events Correction and Energy Correction

- The EM-jet p_T values are corrected for contamination from Underlying Events (UE) with off-axis cone method
- The EM-jet energy is corrected to the particle level from simulation

Figure: Detector EM-jet energy to particle level correction

Phys Rev D 91 112012 (2015), ALICE Collaboration

Figure: UE correction

BBC hit cuts

- Beam Beam Counter (BBC) can be used to triggering, monitoring luminosity and local polarimetry
- BBC are located on both forward and backward side
 - BBC: $2.1 < |\eta| < 5$.
- Benefits for cuts on BBC hits:
 - Reduce accidental coincidence events with a second interaction in the same bunch crossing
 - Get rid of high luminosity events which may cause pile-up effect
- The cut on forward BBC hits can increase fraction of signal significantly

