Kaon femtoscopy in Au+Au collisions from the Beam Energy Scan at the STAR experiment

Jindřich Lidrych for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

17th International Conference

Strangeness in Quark Matter

 $10^{th} - 15^{th}$ July 2017

Femtoscopy

Motivation for kaon femtoscopy

Femtoscopy

In comparison with the standard pion femtoscopy, kaons provide following advantages
Kaons contain strange quark

Less feed-down – smaller contamination with non-primary kaons from resonance decays

Smaller cross section – information about a different stage of the collision evolution

Kaon femtoscopy

STAR Experiment

Methods

Results from 200 GeV

BW Fit

However, more difficult due to lower number of kaon pairs per event

This talk:

Part I: Identical charged kaon femtoscopy

- Results from BES
- K⁺K⁻ femtoscopy

Model comparison

Conclusions

- Kaon pairs: Quantum statistics and Coulomb interaction dominate at low q_{inv}
- Goal: Extraction of space-time characteristics and kinetic freeze-out parameters

Part II: Non-identical charged kaon femtoscopy

- Kaon pairs: Coulomb interaction and strong interaction in *s* and *p*-wave
- Goal: Extract space-time characteristics in the region of the resonance

STAR Experiment at RHIC

-4-

Identical charged kaon femtoscopy

Femtoscopy	
Kaon femtoscopy	
STAR Experiment	
Methods	
Results from 200 GeV	Part I:
BW Fit	Identical charged kaon femtoscopy
Results from BES	
K ⁺ K ⁻ femtoscopy	
Model comparison	
Conclusions	

Extraction of source radii from CF

Results from 200 GeV: 3D Kaon source radii

Results from 200 GeV: Kaon vs Pion source radii

Results – Kaon radii & Spectra & Blast-wave model

- Blast-wave parameterization can provide additional insight into the freeze-out parameters Lisa, Retiere PRC 70:044907, 2004
- Simultaneous fit of kaon source radii and particle spectra($\pi/K/p$) PHENIX PRC 69:034909, 2004

Methods

Kaon femtoscopy

- Parameters of Blast-wave fit are:
 - freeze-out temperature T
 - maximum transverse rapidity ρ_0 system proper time τ
- radius of the source *R* e
 - emission duration $\Delta \tau$

Au+Au $\sqrt{s_{\rm NN}}$ = 200 GeV

Results – Kaon radii & Spectra & Blast-wave model

World systematics of kaon femtoscopic measurements

Femtoscopy

Kaon femtoscopy

STAR Experiment

Methods

Results from 200 GeV

BW Fit

Results from BES

K⁺K⁻ femtoscopy

Model comparison

Conclusions

Results from RHIC Beam Energy Scan I:

Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4

Kaon:

BES: centrality 0-20%, $0.20 < k_{\rm T} < 0.50$ GeV/*c* 200 GeV: centrality 0-10%, $0.05 < k_{\rm T} < 0.35$ GeV/*c*

+ results from ALICE Nucl.Phys. A956 (2016) 373-376 2.76 TeV: centrality 0-10%, $< k_{\rm T} > \sim 0.35$ GeV/c

Pion:

BES + 200 GeV: centrality 0-5%, $< k_{\rm T} > \sim 0.22$ GeV/*c*

- Systematic uncertainties for STAR results at all energies have similar sizes as the ones shown for 27 GeV as shaded areas
- The available data will allow detailed study as already performed for Au+Au $\sqrt{s_{NN}}$ = 200 GeV

References: Pion femtoscopy - STAR PRC 92 (2015) 14904

July 10th – 15th 2017

Jindřich Lidrych

Non-identical charged kaon femtoscopy

Femtoscopy	
Kaon femtoscopy	
STAR Experiment	
Methods	
Results from 200 GeV	Part II:
BW Fit	Non-identical charged kaon femtoscopy
Results from BES	
K ⁺ K ⁻ femtoscopy	
Model comparison	
Conclusions	

Non-identical charged kaon femtoscopy

STAR Nature 527 (2015) 34 (2015)0.9 0.8 345 proton-proton 0.7 1.3 -C_{inclusive} . 34 1.2 1+x_{pp}[C_{pp}-1] ò 1.1 0.9 0.8 antiproton-antiproton 0.7 1 0.15 k*(GeV/c) 0.05 0.1

— C_{inclusive} --- 1+x_{pp}[C_{pp}-1]

1.1

- $k^* = 126 \,\mathrm{MeV}/c$, $\Gamma = 4.3 \,\mathrm{MeV}/c^2$
- First systematic study

Raw K+K⁻ correlation functions

Comparison of 1D K⁺K⁻ to theoretical model

Femtoscopy

Kaon femtoscopy

 Extracted radii from like-sign kaon femtoscopy are used for theoretical calculation of unlikesign correlation function
 Experimental data

STAR Experiment

Methods

Results from 200 GeV

BW Fit

Results from BES

K⁺K⁻ femtoscopy

Model comparison

Conclusions

- Gauss + Lednický model of final-state interaction Lednicky: Phys.Part.Nucl. 40 (2009) 307-352
 - Includes $\phi(1020)$ resonance due to the FSI

 $CF(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$

- Gaussian parameterization of source size source size R_{inv} is extracted from the like-sign correlation function fit
 - Gaussian shape is suggested by kaon source imaging STAR: PRC 88 (2013) 34906
- The theoretical function is transformed to the experimental one via: $CF^{exp} = (CF^{theo} - 1)\lambda + 1$ in order to compare to an experimental correlation function,

which is corrected for impurities

for theoretical calculation

STAR preliminary

0.5

K+K+

k_T¹[GeV/*c*]

 R_{inv}

Comparison of 1D K⁺K⁻ to Lednický model

July 10th – 15th 2017

Comparison of 1D K⁺K⁻ to Lednický model

• influence of the presence of $r^* - k^*$ correlations ?

July 10th – 15th 2017

Conclusions

Conclusions

Measurement of $K^+K^+ \otimes K^-K^-$ correlations in Au+Au collisions at 200 GeV \checkmark Extraction of source radii R_{out} , R_{side} and R_{long} from 3D CF

Comparison of K and π source radii: $R_{\rm side}$ - similar trend

 $R_{\rm out}$ and $R_{\rm long}$ - different trend

Kinetic freeze-out parameters were extracted using the Blast-Wave parameterization

Measurement of K^+K^- correlations in Au+Au collisions at 200 GeV

- Strong centrality and k_T dependence in $\phi(1020)$ region
- Possible breakdown of the femtoscopic formalism for small systems

The End

FemtoscopyKaon femtoscopySTAR ExperimentMethodsResults from 200 GeVBW FitResults from BESK+K- femtoscopy	Thank you for your attention
Results from BES K ⁺ K ⁻ femtoscopy Model comparison Conclusions	

The End

Femtoscopy Kaon femtoscopy STAR Experiment		
Results from 200 GeV BW Fit Results from BES	Back-up slides	017
K ⁺ K ⁻ femtoscopy Model comparison Conclusions		Utrecht 2

Blast-wave model – spectra fit

July 10th – 15th 2017

Jindřich Lidrych