Global polarization of hyperons measured by STAR in the RHIC Beam Energy Scan

Mike Lisa, Ohio State University for the STAR Collaboration

Outline

Motivation

- angular momentum and vorticity in heavy ion collisions
- self-analyzing nature of Lambda decay

Current analysis: STAR @ BES energies – preliminary results

- Dealing with a strong artifact: decay-topology-dependent efficiency
- positive signals for Lambdas and AntiLambdas
- centrality dependence

Summary & Outlook

• |L| ~ 10⁶ ħ in non-central collisions

- Does angular momentum get distributed thermally?
- Does it generate a "spinning QGP?"
 - consequences?
- How does that affect fluid/transport?
 - Vorticity: $\vec{\omega} = \vec{\nabla} \times \vec{v}$
- How would it manifest itself in data?

Rotational & Irrotational Vortices

Rigid-body-like vortex $v \propto r$

Irrotational vortex $v \propto 1/r$

This one is like the moon, always facing the same side toward Earth

Notice the rotation, or lack thereof, in the fluid elements

Vortex shedding

purple: $\vec{\omega}$ in green: $\vec{\omega}$ out

(in agreement with *total* angular momentum)

purple: ω in green: $\vec{\omega}$ out

Remember your "homework" – vortices by Physics Girl https://www.youtube.com/watch?v=pnbJEg9r1o8

(in agreement with *total* angular momentum)

purple: ω in green: $\overrightarrow{\omega}$ out

Localized vortex generation via baryon stopping

Viscosity dissipates vorticity to fluid at larger scale

Vorticity – fundamental sub-femtoscopic structure of the "perfect fluid" and its generation

Connection to experiment

 Fluid vorticity may generate global polarization (alignment of spin with collision system angular momentum) of emitted particles

- Betz, Gyulassy, Torrieri PRC76 044901 (2007)
- Becattini et al., PRC88 034905 (2013)
- Becattini et al., JPhys 509 012055-5 (2014) (SQM2013)
- Csernai et al., JPhys 012054-5 (2014) (SQM2013)
- Grossi JPhys 527 012015-5 (2014) (XIV Conf. Th. Physics)
- Becattini et al. arxiv:1501.04468

Similar conclusions based on QCD spin-orbit coupling (non-hydro picture)

- Voloshin arxiv:nucl-th/0410089
- Liang and Wang, PRL94 102301 (2005)

Analysis approach

- Study Au+Au collision in the BES:
 - 7.7, 11.5, 19.6, 27, 39 GeV
- Tracking is performed by the TPC
 PID is done using the TPC + TOF

- **BBC** detects participants to determine first order event plane
 - \rightarrow estimate of direction of angular momentum \hat{L}

Reaction Plane

Analysis approach

Lambdas are "self-analyzing"

- reveal polarization by preferentially emitting daughter proton in spin direction
- more on this in a few slides
 - E. Cummins, Weak Interactions (McGraw-Hill, 1973)

Topological cuts optimized to maximize yield significance

θ

- Basic Track Cuts
 - If proton has ToF 0.5 $(\text{GeV/c}^2)^2 < m^2 < 1.5 (\text{GeV/c}^2)^2$ (TPC $|n_{\sigma}| < 3$)
 - If pion has ToF $(0.017 0.013 \cdot \frac{p}{GeV/c^2})(GeV/c^2)^2 < m^2 < 04 (GeV/c^2)^2$ (TPC $|n_{\sigma}| < 3$)
- Lambda Topological cuts

- Daughter DCA < 1 cm, 1.108 GeV/ $c^2 < m < 1.122$ GeV/ c^2

M.A. Lisa - WPCF 2015

12

Contributors to Global Polarization

<u>Vortical or QCD spin-orbit</u>: Lambda and AntiLambda spins aligned with L
 Sigma feed-down tends to dampen the effect

Contributors to Global Polarization

- Both may contribute
- Vortical or QCD spin-orbit: Lambda and AntiLambda spins aligned with L
 Sigma feed-down tends to dampen the effect
- (electro)magnetic coupling:

Lamdas anti-aligned, and AntiLambdas aligned

Sigma feed-down goes in same direction as the effect on primaries

Contributors to Global Polarization

Known effect in p+p collisions [e.g. Bunce et al, PRL 36 1113 (1976)]

• Lambda polarization at *forward* rapidity relative to *production plane*

Both may contribute

- <u>Vortical or QCD spin-orbit</u>: Lambda and AntiLambda spins aligned with L
 Sigma feed-down tends to dampen the effect
- <u>(electro)magnetic coupling</u>: Lamdas anti-aligned, and AntiLambdas aligned
 - Sigma feed-down goes in same direction as the effect on primaries
 - Polarization w/ production plane: No integrated effect at midrapidity for Lambda
 - no effect *at all* for AntiLambdas
 - also, would polarize perpendicular to L for out-of-plane particles tested

Results shown today

not corrected for reaction plane resolution (i.e. smearing of L)
 final result will be larger when correction is applied

2escion Plane

M.A. Lisa - WPCF 2015 - Warsaw, Poland - November 2015

Relevant quantity

Relevant quantity $\vec{S}_{\Lambda} \cdot \hat{L}$

$$\frac{dW}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{S}_{\Lambda}^* \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha \cos\theta \right)$$

$$\alpha = 0.642 \quad \text{[measured]}$$

 \vec{S}_{Λ}^* is Λ spin *in* Λ *frame*

 \hat{p}_{p}^{*} is proton momentum direction *in* Λ *frame*

$$\vec{S}_{\Lambda} = \vec{S}_{\Lambda}^{*} + \frac{\gamma^{2}}{\gamma + 1} \left(\vec{\beta} \cdot \vec{S}_{\Lambda}^{*} \right) \vec{\beta}$$

 $\overline{\beta}$ boosts from Λ frame to system c.m.

Results shown today

- not corrected for reaction plane resolution (i.e. smearing of L)
 final result will be larger when correction is applied
- extracted assuming Lambda spin direction *equals* proton momentum direction
 Final result will be larger when this simplifying assumption removed

Spin-orientation-dependent efficiency (!)

In Lambda frame, proton & pion have equal-magnitude momentum, but not in STAR frame

$$\frac{R_{\pi}}{R_{p}} = \frac{\left| \overrightarrow{p}_{T,\pi} \right|}{\left| \overrightarrow{p}_{T,p} \right|} \sim \frac{m_{\pi}}{m_{p}} \sim \frac{1}{7} \right\} \longrightarrow \pi \text{ tracking drives } \Lambda \text{ efficiency}$$

pion emitted backward in Lambda c.m., \rightarrow tight curl, large DCA (distance to collision vertex) \rightarrow much-reduced efficiency

 \rightarrow higher efficiency to find negative-helicity Lambdas

Relevant quantity

 $\vec{S}_{\Lambda}\cdot\hat{L}$

Spin-orientation-dependent efficiency (!)

- Same effect seen in embedding/GEANT simulations
- p_T-dependent
- not correlated with RP
- explicitly cancels when summing yields 180 degrees separated

Relevant quantity

 $\vec{S}_{\Lambda}\cdot\hat{L}$

How to quantify the effect?

 $\left\langle \vec{S}_{\Lambda} \cdot \hat{L} \right\rangle$ seems an obvious choice

May depend on pT, phi, (rapidity?)
 –Csernai & Becatinni...

 There are other (perhaps better) ways to quantify, but no time to discuss today...

Relevant quantity

 $\vec{S}_{\Lambda}\cdot\hat{L}$

Preliminary results

First clear positive signal of global polarization in heavy ion collisions!

√s _{NN} (GeV)	7.7	11.5	19.6	27	39
٨	3.1σ	3.4σ	3.3σ	3.8σ	-0.2σ
anti-A	-	-	2.1σ	3.0σ	2.0σ

Marginal significance for *one* energy. Ensemble & trend adds confidence.

- Both Lambdas and AntiLambdas show positive polarization \rightarrow vorticity and/or spin-orbit
 - increased AntiLambdas polarization could arise from (electro)magnetic contribution, but errorbars...
- Cannot interpret energy dependence until resolution correction is done

Preliminary results

- Raw signal larger for peripheral collisions. Not unreasonable, but...
- ...cannot interpret centrality dependence until resolution correction is done

√s _{NN} (GeV)	7.7	11.5	19.6	27	39
20-80%	4.9σ	4.1σ	3.4σ	4.4σ	1.26σ

Summary

- Large angular momentum in noncentral heavy ion collisions may be partially transferred to the hot fireball at midrapidity
 - thermalization: if angular momentum is distributed thermally, spin states will be preferentially occupied
 - In a hydro scenario, achieved through vorticity generated by shear viscosity
 At a microscopic level, achieved QCD spin-orbit coupling transfers
- Global hyperon polarization probes this (largely unexplored) physics
- STAR has seen the first positive signal of global hyperon polarization
 3σ to 5σ signal for Λ's at each energy below 39 GeV
- Resolution corrections in progress
 - clear picture of energy & centrality dependence requires this correction
- "null test" : troubling (3 sigma) signal on one side of the peak at one energy – red flag? fluctuation?
 - under investigation

Thanks for your attention

Effect of (Anti)Sigma feed-down

 $\vec{\mu}_{\Sigma^0} = (+0.79\mu_N)\vec{S}_{\Sigma^0} \implies \vec{S}_{\Sigma^0} \text{ will be aligned with } \vec{J}_{\text{system}} (\vec{S}_{\Sigma^0} || + \vec{J}_{\text{system}})$

 \Rightarrow daughter Λ 's will be antialigned with \vec{J}_{system} $\left(\vec{S}_{\Lambda[secondary]} \| - \vec{J}_{system}\right)$

Similar argument for the antiparticles, where both the primary and secondary $\overline{\Lambda}$ align with \vec{J}_{system} Thus, for magnetic-coupling-induced polarization, feed-down goes in the same direction as the signal from primary Lambdas.