

INCLUSIVE JET MEASUREMENTS IN SMALL SYSTEM COLLISIONS $AT\sqrt{s_{NN}} = 200 \text{ GeV AT STAR}$

Tong Liu (Yale University) for the STAR collaboration 2020 Fall Meeting of the Division of Nuclear Physics Oct 30, 2020

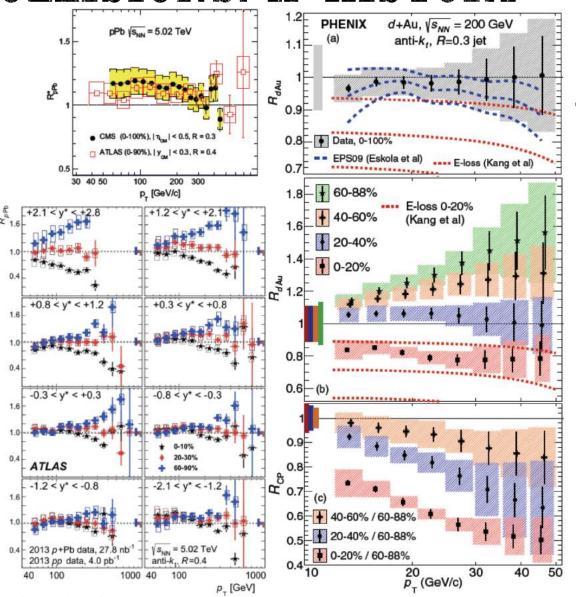
SMALL SYSTEM COLLISIONS: A HISTORY

><2010: Benchmark for large system collisions

>2012: Possible collective flow

QGP creation: open question

>2015-16: Jet measurements in small systems from various collaborations:


 Inclusive nuclear modification factor consistent with unity

 Event Activity (EA) dependence of yield observed

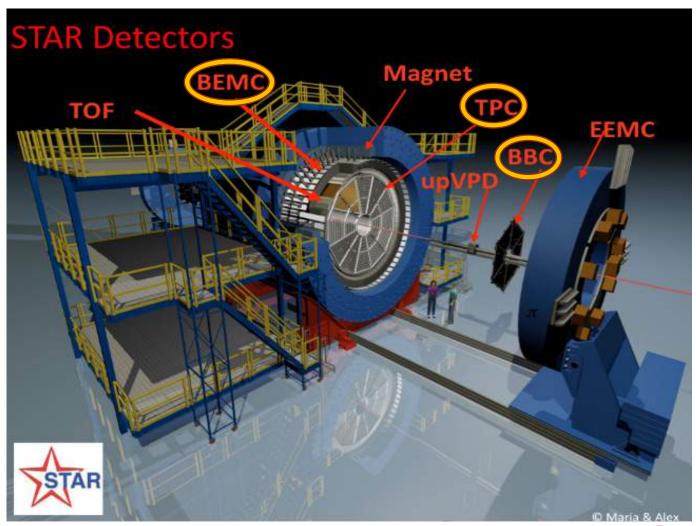
➤Today: p+Au jet measurement from STAR

• Inclusive: this talk

Semi-inclusive: David Stewart, EB.00005

THE STAR DETECTOR

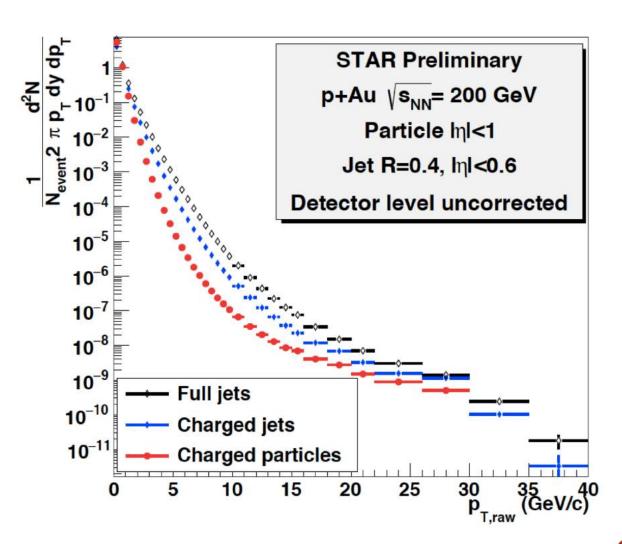
➤ Time Projection Chamber (TPC)

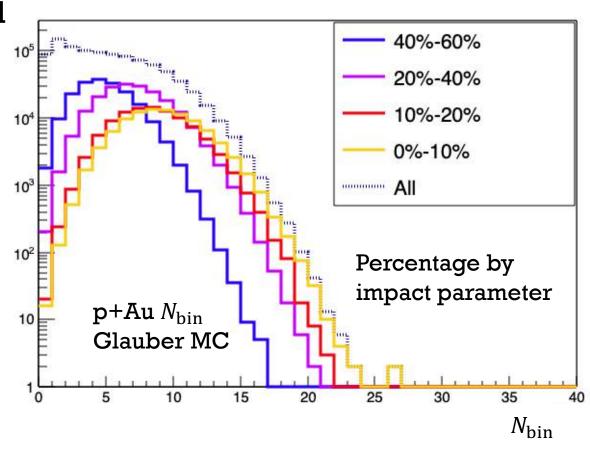

- Methane-argon TPC
- Momentum reconstruction for charged tracks
- $|\eta| < 1$, 2π coverage

➤ Barrel Electro-Magnetic Calorimeter (BEMC)

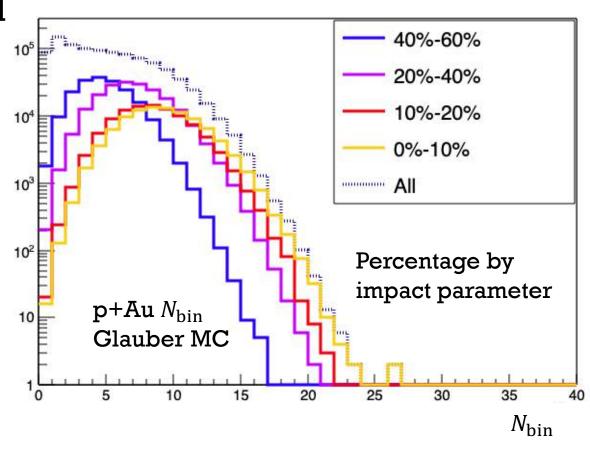
- Lead/Scintillator stack towers
- Energy deposition detection for charged and neutral particles
- $|\eta| < 1$, 2π coverage

▶Beam-Beam Counter (BBC)

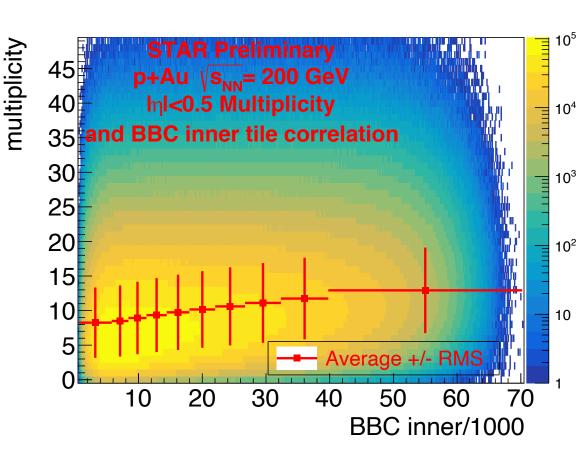

- Scintillator clusters at east & west of collision point
- Outer ring $2 < |\eta| < 3.4$, inner $3.4 < |\eta| < 5$


DATASET AND SELECTION

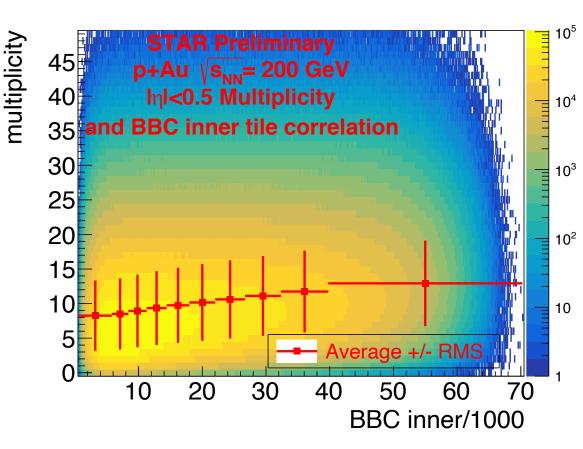
- ▶Data: 2015 *p*+Au @ 200 GeV
- >Particle selection:
 - TPC tracks & BEMC Towers
 - $0.2 < p_{\rm T} < 30 \ {\rm GeV}/c, |\eta| < 1$
 - Hadronic correction for charged particles
- >Jet reconstruction:
 - anti- k_{T} algorithm
 - R=0.4
 - $|\eta| < 1-R$
- >Jet reach:
 - Inclusive spectrum: ≤ 40 GeV/c
 - EA-binned spectrum: $\lesssim 30 \text{ GeV/}c$



- Asymmetric small system: geometric parameters like $\langle N_{\rm bin} \rangle$ don't correlate as well with impact parameter as in A+A collisions
- Concept of centrality is not trivial for small systems

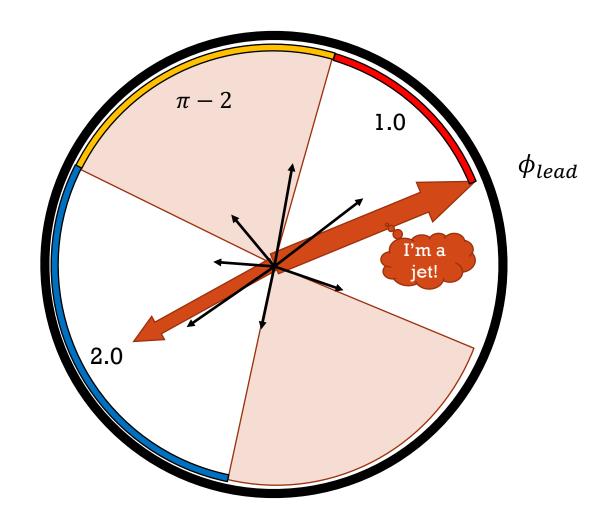


- Asymmetric small system: geometric parameters like $\langle N_{\rm bin} \rangle$ don't correlate as well with impact parameter as in A+A collisions
- Concept of centrality is not trivial for small systems
- EA: degree of violence of the collision
 - Expressed as percentage with 0% being the most intense, 100% being missing
- EA indicator: experimental observable that best correlates with EA



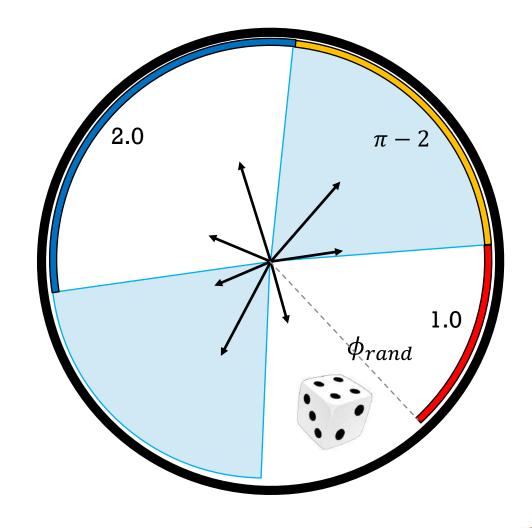
- Asymmetric small system: geometric parameters like $\langle N_{\rm bin} \rangle$ don't correlate as well with impact parameter as in A+A collisions
- Concept of centrality is not trivial for small systems
- EA: degree of violence of the collision
 - Expressed as percentage with 0% being the most intense, 100% being missing
- EA indicator: experimental observable that best correlates with EA
- ➤ Possible candidates:
 - Mid-rapidity signal: underlying multiplicity UE_{mult}
 - High rapidity signal: BBC

- Asymmetric small system: geometric parameters like $\langle N_{\rm bin} \rangle$ don't correlate as well with impact parameter as in A+A collisions
- Concept of centrality is not trivial for small systems
- EA: degree of violence of the collision
 - Expressed as percentage with 0% being the most intense, 100% being missing
- EA indicator: experimental observable that best correlates with EA
- ➤ Possible candidates:
 - Mid-rapidity signal underlying multiplicity UE_{mult}
 - High rapidity signal: BBC

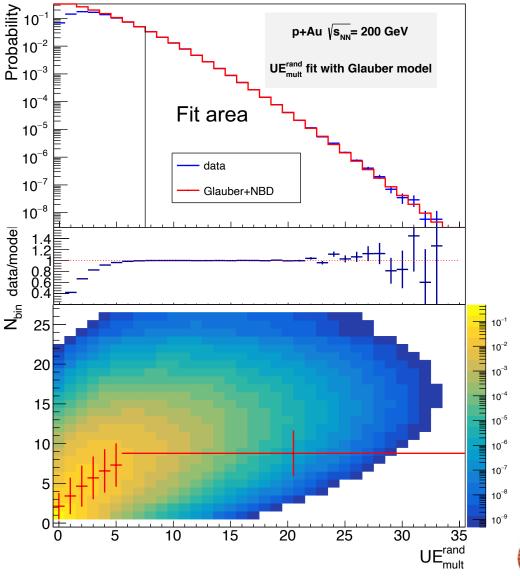


TL, QM2019

UNDERLYING MULTIPLICITY AS EA

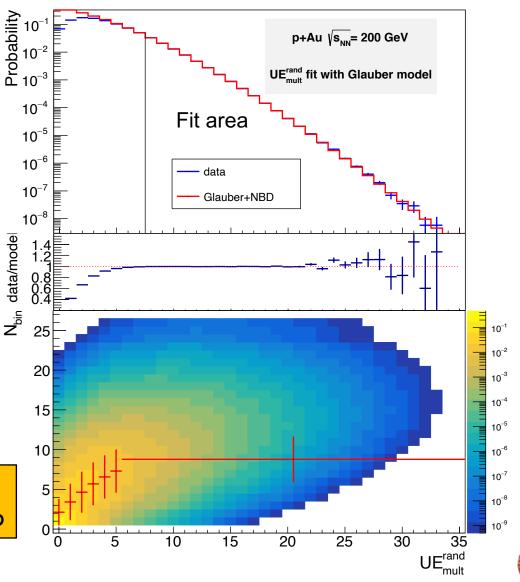

- Inspiration: Veronica Verkest (Sat LB.00005)
- ightharpoonup Region **transverse to leading jet** ϕ as UE acceptance
- Selected track multiplicity in *transverse to-jet* UE acceptance as EA indicator for jet events: $UE_{\text{mult}}^{\text{trans}}$
 - Indicator of "soft" physics, i.e. excluding jet

UNDERLYING MULTIPLICITY AS EA


- Inspiration: Veronica Verkest (Sat LB.00005)
- ightharpoonup Region **transverse to leading jet** ϕ as UE acceptance
- Selected track multiplicity in *transverse to-jet* UE acceptance as EA indicator for jet events: $UE_{\text{mult}}^{\text{trans}}$
 - Indicator of "soft" physics, i.e. excluding jet
- Multiplicity transverse to random direction as minimum-bias reference for defining percentage: $UE_{\text{mult}}^{\text{rand}}$
 - Avoid bias from artificially choosing the "empty" part of the event and migrating towards low multiplicity

GLAUBER MODELING OF COLLISIONS

- ➤ Glauber MC of minimum-bias p+Au collision
- Convoluted with Negative-Binomial Distribution to fit to $UE_{\text{mult}}^{\text{rand}}$ distribution at high end
 - $\chi^2/ndf = 0.79$
- > Group (high end) into deciles & get $\langle N_{\rm bin} \rangle$ for each $UE_{\rm mult}^{\rm rand}$ bin
- >Low end of multiplicity: ratio as trigger efficiency



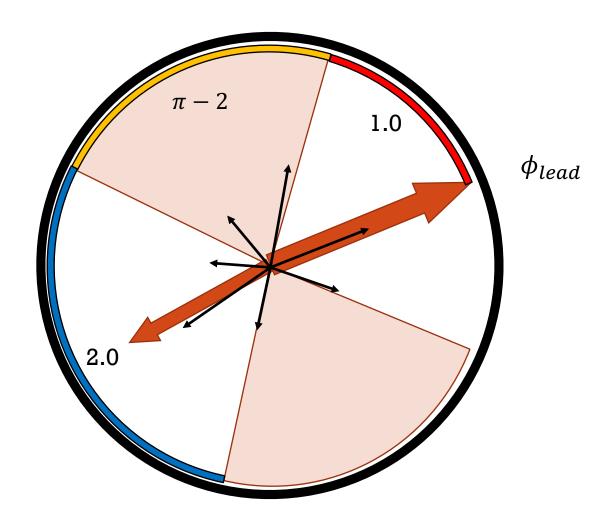
GLAUBER MODELING OF COLLISIONS

- ➤ Glauber MC of minimum-bias p+Au collision
- Convoluted with Negative-Binomial Distribution to fit to $UE_{\text{mult}}^{\text{rand}}$ distribution at high end
 - $\chi^2/ndf = 0.79$
- > Group (high end) into deciles & get $\langle N_{\rm bin} \rangle$ for each $UE_{\rm mult}^{\rm rand}$ bin
- >Low end of multiplicity: ratio as trigger efficiency
- Glauber model scaled jet yield

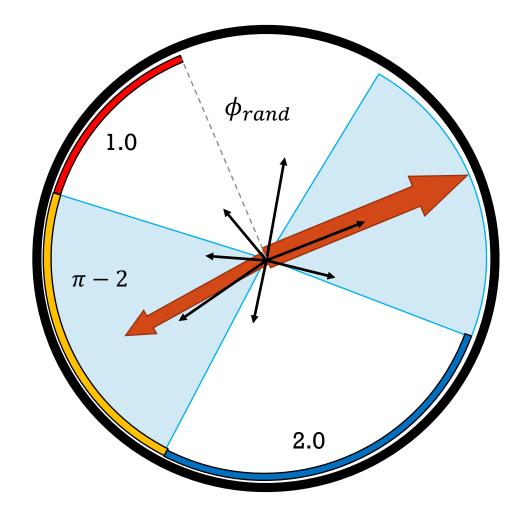
$$?Y_{\text{jet}} = \frac{1}{\langle N_{\text{bin}} \rangle} \frac{1}{N_{\text{ev}}^{\text{rand}}} \left(\frac{d^2}{d\eta d\phi} \frac{dN_{\text{jet}}^{\text{trans}}}{dp_{\text{T}}} \right)$$

 N_x^{rand} : number of X with $UE_{\text{mult}}^{\text{rand}}$ within the range of a~b N_x^{trans} : number of X with $UE_{\text{mult}}^{\text{trans}}$ within the range of a~b

- Goal: capture the underlying event activity originating from soft physics
- >Two effects to avoid:
 - Minimum-bias events: artificial migration
 - High- p_T jet events: jet contamination
- Assumption: soft physics process is intrinsically isotropic; azimuthal angles of jets are uncorrelated with soft physics

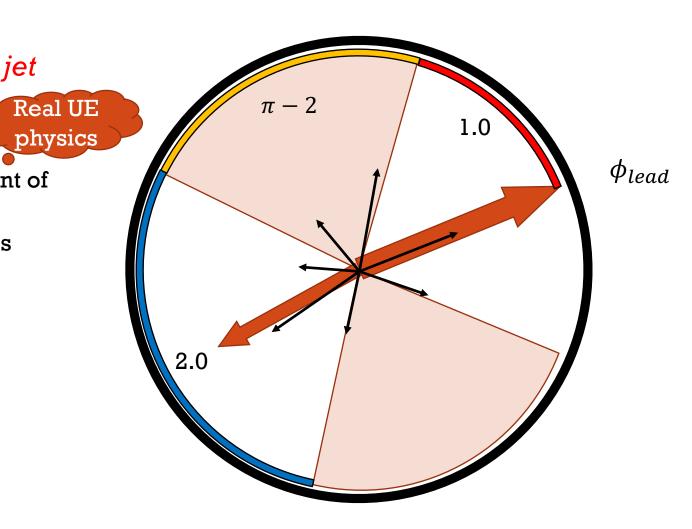


- Selection: deciding which category a *jet* event belongs to
- \gt Looking at $p_T > 10 \text{ GeV/}c$ jet events



- Selection: deciding which category a *jet* event belongs to
- \gt Looking at $p_T > 10 \text{ GeV/}c$ jet events
 - UE^{trans}_{mult}: direction of leading jet independent of soft physics, no artificial migration;

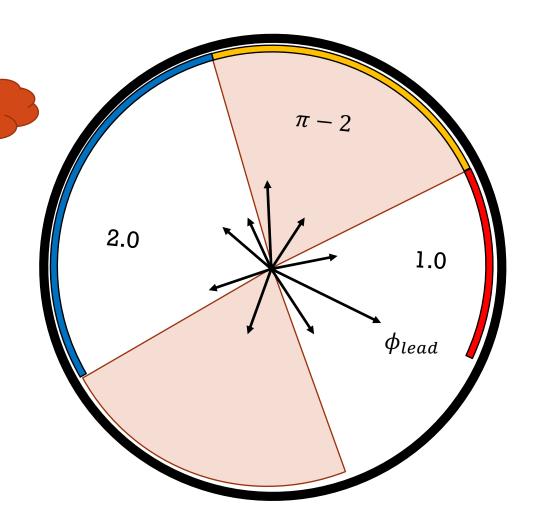
- Selection: deciding which category a *jet* event belongs to
- ▶ Looking at $p_T > 10 \text{ GeV}/c \text{ jet events}$
 - UE^{trans} trans : direction of leading jet independent of soft physics, no artificial migration;
 - $UE_{\text{mult}}^{\text{rand}}$: contamination likely in many events

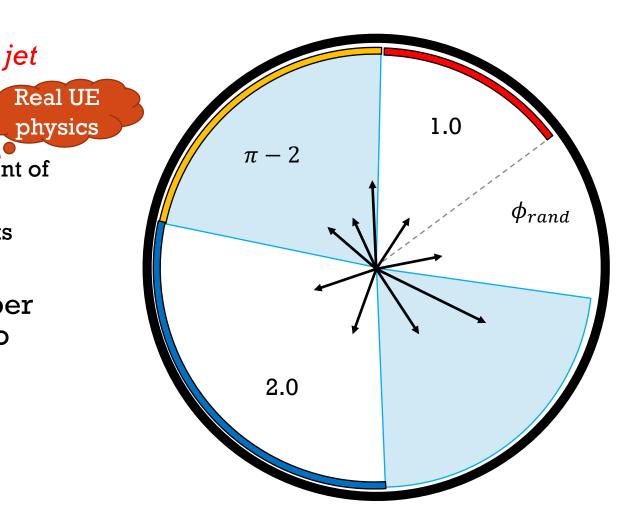


Selection: deciding which category a *jet* event belongs to

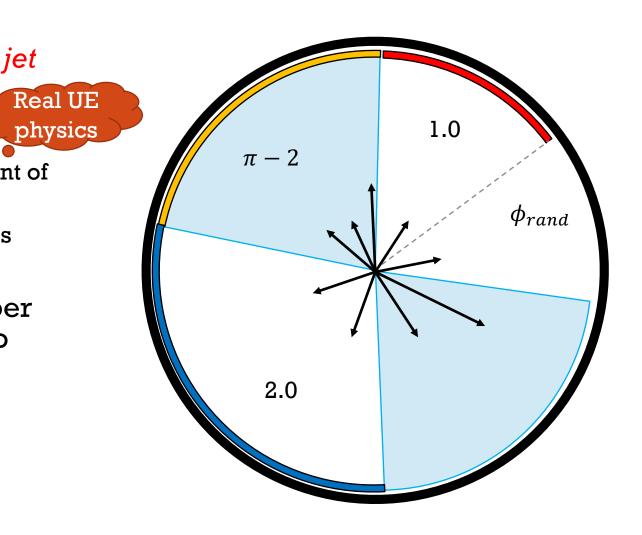
 \triangleright Looking at $p_T > 10 \text{ GeV/}c$ jet events

 UE_{mult}^{trans}: direction of leading jet independent of soft physics, no artificial migration;


• $UE_{\text{mult}}^{\text{rand}}$: contamination likely in many events


physics

- Selection: deciding which category a *jet* event belongs to
- ► Looking at $p_T > 10 \text{ GeV/}c$ jet events
 - UE_{mult}^{trans}: direction of leading jet independent of soft physics, no artificial migration;
 - $UE_{\text{mult}}^{\text{rand}}$: contamination likely in many events
- Normalization: determining the number of *minimum-bias* events that belong to this category
 - UE^{trans} : artificial migration biases the distribution


- Selection: deciding which category a *jet* event belongs to
- ► Looking at $p_T > 10 \text{ GeV/}c$ jet events
 - UE_{mult}^{trans}: direction of leading jet independent of soft physics, no artificial migration;
 - $UE_{\text{mult}}^{\text{rand}}$: contamination likely in many events
- Normalization: determining the number of *minimum-bias* events that belong to this category
 - $UE_{\mathrm{mult}}^{\mathrm{trans}}$: artificial migration biases the distribution
 - UE^{rand}_{mult}: contamination rarely occurs

- Selection: deciding which category a *jet* event belongs to
- ► Looking at $p_T > 10 \text{ GeV/}c$ jet events
 - UE_{mult}^{trans}: direction of leading jet independent of soft physics, no artificial migration;
 - $UE_{\text{mult}}^{\text{rand}}$: contamination likely in many events
- Normalization: determining the number of *minimum-bias* events that belong to this category
 - UE^{trans} : artificial migration biases the distribution
 - UE^{rand}_{mult}: contamination rarely occurs

- >Closure test: insert toy physics and check which normalization works
 - Take a portion of the real data (as soft background); Claim its N_{ev}^{rand} distribution as "true"
 - Insert a 200 GeV/c toy jet (20 GeV/c particles \times 10 in R=0.03 cone) into random 1% of the events
 - Re-perform the analysis as usual;
 - Ratio between high- and low-EA yield at 200 GeV/c should be close to unity

Sample size: 4.4M Events

Category	Toy jet N ^{trans}	"true" Nev	$N_{ m ev}^{ m rand}$	N ^{trans}
High: $UE_{\text{mult}} > 10$	3999	406k	421k	288k
$Y_{\rm hi} = N_{\rm jet,hi}^{\rm trans} / N_{\rm ev}^{\rm hi}$	/	0.99%	0.95%	1.39%
Low: $UE_{\text{mult}} = 3$	5503	551k	548k	604k
$Y_{lo} = N_{jet,lo}^{trans} / N_{ev}^{lo}$	/	1.00%	1.00%	0.91%
$Y_{\rm hi}/Y_{\rm lo}$	/	0.99	0.95	1.52

- >Closure test: insert toy physics and check which normalization works
 - Take a portion of the real data (as soft background); Claim its N_{ev}^{rand} distribution as "true"
 - Insert a 200 GeV/c toy jet (20 GeV/c particles \times 10 in R=0.03 cone) into random $\frac{1}{2}$ % of the events
 - Re-perform the analysis as usual;
 - Ratio between high- and low-EA yield at 200 GeV/c should be close to unity

Sample size: 4.4M Events

Jet contamination

7	Events with
	>10 GeV/c
	jet: 0.03%

Category	Toy jet N _{jet}	"true" Nev	Nrand	$N_{ m ev}^{ m trans}$
High: $UE_{\text{mult}} > 10$	3999	406k	421k	288k
$Y_{\rm hi} = N_{\rm jet, hi}^{\rm trans} / N_{\rm ev}^{\rm hi}$	/	0.99%	0.95%	1.39%
Low: $UE_{\text{mult}} = 3$	5503	551k	548k	604k
$Y_{\rm lo} = N_{\rm jet,lo}^{\rm trans} / N_{\rm ev}^{\rm lo}$	/	1.00%	1.00%	0.91%
$Y_{\rm hi}/Y_{\rm lo}$	/	0.99	0.95	1.52

- >Closure test: insert toy physics and check which normalization works
 - Take a portion of the real data (as soft background); Claim its N_{ev}^{rand} distribution as "true"
 - Insert a 200 GeV/c toy jet (20 GeV/c particles \times 10 in R=0.03 cone) into random $\frac{1}{2}$ % of the events
 - Re-perform the analysis as usual;
 - Ratio between high- and low-EA yield at 200 GeV/c should be close to unity

Sample size: 4.4M Events

Jet contamination

Events with
>10 GeV/c
jet: 0.03%

Category	Toy jet $N_{ m jet}^{ m trans}$	"true" Nev	N _{ev} rand	N _{ev} trans
High: $UE_{\text{mult}} > 10$	3999	406k	421k	288k
$Y_{\rm hi} = N_{\rm jet,hi}^{\rm trans} / N_{\rm ev}^{\rm hi}$	/	0.99%	0.95%	1.39%
Low: $UE_{\text{mult}} = 3$	5503	551k	548k	604k
$Y_{\rm lo} = N_{\rm jet,lo}^{\rm trans} / N_{\rm ev}^{\rm lo}$	/	1.00%	1.00%	0.91%
$Y_{\rm hi}/Y_{\rm lo}$	/	0.99	0.95	1.52

11

Artificial

migration

SUMMARY & OUTLOOK

- ✓ Performed measurement of inclusive jets in $\sqrt{s_{\rm NN}}$ = 200 GeV p+Au collisions
- \checkmark Developed the method of using UE_{mult} as an event activity indicator
- √ Validated selection & normalization method
- ✓ Matched Glauber model to $UE_{\mathrm{mult}}^{\mathrm{rand}}$ distribution
- > Include High-Tower triggered data into analysis
- > Correct for detector effects
- \triangleright Calculate nuclear modification factors R_{CP} & R_{pAu}
- > Compare with semi-inclusive analysis & results from other collaborations

SUMMARY & OUTLOOK

- ✓ Performed measurement of inclusive jets in $\sqrt{s_{\rm NN}}$ = 200 GeV p+Au collisions
- \checkmark Developed the method of using UE_{mult} as an event activity indicator
- √ Validated selection & normalization method
- ✓ Matched Glauber model to $UE_{\mathrm{mult}}^{\mathrm{rand}}$ distribution
- >Include High-Tower triggered data into analysis
- > Correct for detector effects
- \triangleright Calculate nuclear modification factors R_{CP} & R_{pAu}
- > Compare with semi-inclusive analysis & results from other collaborations

David Stewart EB.00005

