Chemical and Kinetic Freeze-out Condition From Heavy-ion Collisions at STAR at RHIC

Lokesh Kumar Panjab University Chandigarh

(for the STAR Collaboration)

Workshop on the QCD Phase Structure at High Baryon Density Region

12-14 November 2019 Central China Normal University

Outline

- Introduction & motivation
- Latest results on yields, ratios, and freeze-out at Au+Au 14.5 GeV (STAR: arXiv: 1908.03585 [nucl-ex]) and U+U 193 GeV (Final publication stage)
- Chemical and kinetic freeze-out parameters using data from STAR experiment
- How iTPC upgrade will help in precision measurement of freeze-out parameters?
- Summary

High-Energy Heavy-Ion Collisions (HICs)

The QCD phase diagram -- Phase diagram of strong interactions

- Understand particle production
- Freeze-out dynamics
- Study QGP properties
- Explore the QCD phase diagram
 - Search for the signals of phase boundary
 - Search for the possible QCD Critical Point
 - Search for the first-order phase transition line

The x and y axes depend on the collision energy of the heavy-ions

Evolution of High-Energy HICs

Time Evolution of Heavy-ion Collisions:

Particle Yields and Ratios: provide Information about QCD phase diagram

The STAR Detector

Particle Identification

Charged particles [π , K, p, and light (anti) nuclei] identified via --

- (a) Ionization energy loss:
 - $< dE/dx > \sim A / \beta^2$ = A (1 + m²/ p²)
- (b) Time-of-flight: $- < \tau > = L / \beta$ $= L (1 + m^2 / p^2)^{1/2}$

Momentum $p = \gamma \beta m$

Strange particles (Λ , K0s, Ξ , Ω ,....)

Resonances (K^* , ϕ , ρ)

Heavy-flavor (Ds,Bs,J/Ψ,Υ.....)

. . .

through --

(c) decay kinematics/ invariant mass

Transverse Momentum Distribution

Transverse Momentum Distribution

Particle Yields

Yields @ 14.5 GeV:

- -- Increase from peripheral to central collisions (except for \bar{p})
- -- Fall in the energy dependence trend

Particle Yields

U+U @ 193 GeV

- Yields are mostly consistent with Au+Au 200 GeV at similar N_{part} within systematic uncertainties
- Centrality
 dependence is
 extended beyond
 N_{part} > 400

Yields increase from peripheral to central collisions

Energy Dependence: Yields

Energy Dependence: Ratios

- Ratios show interesting trends for energy dependence
- Au+Au 14.5 GeV and U+U 193 GeV fit well in the trend
- Higher energies:
 Similar (pair)
 production of particle
 and antiparticle

Lower energies:

$$\pi^{-} > \pi^{+}, K^{+} > K^{-}, p > \overline{p}$$

Chemical Freeze-out

Inelastic collisions among the particles cease; the particle yields and ratios gets fixed

Statistical thermal model:

J. Cleymans et al., Comp. Phys. Comm. 180, 84 (2009)

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} = \frac{V T m_i^2 g_i}{2\pi^2} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k} \left(e^{\beta k \mu_i} \right) K_2 \left(\frac{k m_i}{T} \right)$$

(Grand canonical ensemble)

 β =1/T; -1(+1) for fermions (bosons),

Z - partition function;

m_i - mass of hadron species i;

V - volume; T - Temperature;

K₂ - 2nd-order Bessel function;

 g_i - degeneracy; μ_i - chemical potential

Model Features: Assumes

- Non-interacting hadrons and resonances
- ☐ Thermodynamically equilibrium system

Experimental particle yields or ratios are input to the thermal model to extract the freeze-out parameters, mainly, T_{ch} and μ_B

Thermal Model Fits

Au+Au @ 14.5 GeV

D. Mishra (STAR Collaboration) Nucl. Phys. A 956, 292 (2016)

Thermal model fit: Grand Canonical / Strangeness Canonical Ensemble using Yield and Ratios Fits

- Good description by statistical thermal model
- Results are consistent between different studied cases

CFO Parameters

STAR: PRC 96, 044904 (2017)

Au+Au @ 14.5 GeV

D. Mishra (STAR Collaboration) Nucl. Phys. A 956, 292 (2016)

Thermal model fit: Grand Canonical Ensemble using yield fits

14.5 GeV CFO parameters follow energy dependence trend

CFO Results – Comparison with T_C

- The experimentally measured phase diagram
- These points constitute the freeze-out curve
- STAR results cover a large range of μ_B
- CFO parameters from thermal model are consistent with recent lattice calculations of T_c
 - -- Transition temperature is close to freeze-out temperature?

CFO Results Using Models

Relation of Lattice QCD observables with experimental observables:

The volume-independent ratios of susceptibilities from lattice QCD are related to the moments of conserved quantities from the experiment ---

$$R_{12} = \frac{\chi_1}{\chi_2} = \frac{\mu}{\sigma^2}$$

A. Bazavov *et al.* Phys. Rev. Lett. 109, 192302 (2012)

$$R_{31} = \frac{\chi_3}{\chi_1} = \frac{S\sigma^3}{\mu}$$

Using R_{12} and R_{31} at a given experimental energy, allows to extract freeze-out parameters – T_{ch} and μ_B

CFO Results Using Models

Limitations:

- Experimental kinematic acceptance cannot be taken into account
- Available only for small chemical potentials.

Hadron Resonance Gas (HRG):

Can be used with similar experimental kinematic acceptance to

calculate fluctuation observables

Allows to expand the range of μ_B

P. Alba et al., Phys. Lett. B738 305, (2014)

- Model results agree with experimental ratios
- Isospin randomization issue below 11.5 GeV.
- Extracted FO parameters depend on the hadron spectrum included in HRG

S. Chatterjee et al. Phys. Rev. C 96, 054907 (2017)

CFO Results – Particle Dependence

Freeze-out parameters dependence on the particle type:

- The FO parameters depend on the particle yields fitted in the statistical thermal model
- Strange and non-strange particle yields give different freeze-out temperature
- Massive strange particle yields lead to higher FO temperature

The observation is consistent with 2CFO (separate strange and non-

strange) freeze-out models –

S. Chatterjee et al. PLB 727, 554 (2013) R. Bellwied et al. PRL 111, 202302 (2013)

K. Bugaev et al. EPL 104, 22002 (2013)

Chemical Freeze-out: Summary

NPA 904, 543c (2013)

Kinetic Freeze-out

Elastic collisions among the particles cease and the momentum distribution gets fixed

Blast-Wave (BW) Model:

$$\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{kin}} \right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{kin}} \right)$$

I₀, K₁: Modified Bessel functions

E. Schnedermann, J. Sollfrank, and U. W. Heinz, Phys. Rev. C 48, 2462 (1993).

 $\rho(r)$ = tanh⁻¹ β , r/R: relative radial position; R: radius of fireball β : transverse radial flow velocity, T_{kin} : Kinetic freeze-out temperature

Model Features:

- ☐ Hydrodynamic based model
- ☐ Assumes particles are locally thermal at a kinetic freeze-out temperature and moving with a common radial flow velocity
- Momentum distributions are fitted simultaneously with BW
- \diamond Two main parameters: T_{kin} and $<\beta>$

Blast-Wave Fit

- Blast-wave model well describes the π , K, p spectra simultaneously
- Extracted parameters: T_{kin} and <β>

KFO Parameters

- T_k decreases and β increases from peripheral to central collisions
- Anticorrelation observed between T_k and β
- 14.5 GeV results show similar N_{part} dependence as at other energies

KFO Parameters

- T_k decreases and β increases from peripheral to central collisions
- Anticorrelation observed between T_k and β
- U+U 193 GeV results show similar N_{part} dependence as at other energies and are consistent with 200 GeV
- Centrality dependence is extended beyond N_{part} > 400

Energy Dependence of FO Parameters

- Chemical freeze-out temperature increases and then saturates with beam energy
- Kinetic freeze-out temperature decreases while <β> (collectivity) increases with beam energy for central collisions
- New STAR results (at Au+Au 14.5 GeV and U+U 193 GeV) are consistent with energy dependence
- Difference between chemical and kinetic freeze-out temperatures increases with beam energy
 - Suggests system interacts for longer duration at higher collisions energies

STAR: arXiv: 1908.03585 [nucl-ex]

Precision Measurements with iTPC

STAR TPC upgrade of inner TPC (iTPC) – Successful data taken in 2019

	Improvement	
Quantity	TPC	iTPC
No. of hits per track	45	72
η coverage	η < 1.0	η < 1.5
Low p _⊤ acceptance	125 MeV/c	60 MeV/c
Momentum and dE/dx resolution	Improved with iTPC	

Improvement in FO parameters Estimation

- Current systematic uncertainties on the freeze-out parameters are large at STAR
- The systematic uncertainties on the spectra, yields, and ratios depend on track quality, low-p_T extrapolation, momentum and dE/dx resolution
- These uncertainties propagate to the extracted freeze-out parameters
- With improvement in these measurements through iTPC upgrade, it is expected to have reduction in uncertainties on spectra, yields and ratios and hence on freeze-out parameters
- BES-II is expected to provide freeze-out parameters with more precision

Summary

- ☐ Latest results on particle yields and ratios from STAR at Au+Au 14.5 GeV and U+U 193 GeV are presented.
 - -- At 14.5 GeV results follow the similar N_{part} dependence as other energies and fit well in energy dependence trend
 - -- At U+U 193 GeV results follow the similar N_{part} dependence as Au+Au 200 GeV and are consistent with Au+Au 200 GeV at similar N_{part} ; centrality dependence is extended beyond $N_{part} > 400$
- □ Chemical and kinetic freeze-out parameters are presented for Au+Au
 14.5 GeV
 - -- The results follow similar **centrality dependence** as other energies and fit well in the **energy dependence** trend
- ☐ Kinetic freeze-out parameters are presented at U+U 193 GeV
 - -- The results follow similar **centrality dependence** as Au+Au 200 GeV and are consistent with Au+Au 200 GeV at similar N_{part}

Summary

- $\hfill \square$ STAR FO results suggest to cover a large range of μ_B in the phase diagram
 - -- The transition temperature from Lattice seems to be close to T_{ch}
 - -- Extracted FO parameters from SHM depend on particle type different values for strange and non-strange hadrons
 - -- FO parameters can be extracted using fluctuation of conserved quantities (net-charge and net-proton) from Lattice and HRG models; Results consistent with SHM (non-strange hadrons)
- □ BES-II with upgraded iTPC will help in precision measurements of FO parameters at STAR at RHIC

Thank You

Back up

Maximum Baryon Density

Phys.Lett. B738 (2014) 305-310

Ensembles: Heavy-ion Experiments

Statistical Thermal Model: THERMUS Package J. Cleymans et al., Comp. Phys. Comm. 180, 84 (2009)

Grand Canonical Ensemble: The energy and quantum numbers or particle numbers are conserved on average through the temperature and chemical potentials.

- -- Widely used in high energy heavy-ion collisions
- -- Chemical potential for particle species *i* is given by:

$$\mu_i = B_i \mu_B + Q_i \mu_Q + S_i \mu_S$$
 B_i, Q_i, S_i : baryon, charge, strangeness number

Strangeness Canonical Ensemble: The strangeness (S) in the system is fixed exactly by its initial value of S, while the baryon and charge contents are treated grand-canonically.

- -- At lower energies, low production of strange particles requires canonical treatment of strangeness
- -- Chemical potential for particle species *i* is given by

$$\mu_i = B_i \mu_B + Q_i \mu_Q$$