

Systematics of Kinetic Freeze-out Properties in High Energy Collisions from STAR

Lokesh Kumar (for the STAR Collaboration)

National Institute of Science Education and Research, Bhubaneswar, India

Outline:

- Introduction & Motivation
- STAR Experiment and Particle Identification
- Invariant Yields and Average Transverse Mass
- Blast Wave Fits
- Summary

RHIC BES Program: Motivation

Explore QCD Phase Diagram: - Search signals of possible phase boundary

- Search for softening of EOS
- Search for the possible QCD Critical Point

BES-I findings:

Many interesting features as a function of beam energy/chemical potential

Freeze-out in Heavy-ion

Chemical Freeze-out:

Inelastic collisions among particles cease

- Particle yields and ratios get fixed
- Chemical freeze-out temperature and baryonic chemical potential

Kinetic Freeze-out:

Elastic collisions among particles cease

- Particle spectral shapes get fixed
- Kinetic freeze-out temperature
 And average transverse flow velocity
 1. J. Steinheimer et al. PRL 110, 042501 (2013)
 2. S. Chatterjee et al. PLB 727, 554 (2013)
 3. K. Bugaev et al., EPL 104, 22002 (2013)

Beyond single (chemical) freeze-out:

XXIV QUARK MATTER DARMSTADT 2014

STAR Experiment

Particle Identification

Invariant Yield

Average Transverse Mass

<m_T> - m is almost constant around BES energies for π, K, p
Thermodynamic system: T ~ <m_T> - m, Entropy ~ dN/dy ∝ log($\sqrt{s_{NN}}$)
L. Van Hove, Phys. Lett. B 118, 138 (1982)

STAR Kinetic Freeze-out: Blast Wave Model

Elastic collisions among the particles stop and the momentum distribution gets fixed

Blast-Wave (BW) Model:

$$\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{kin}}\right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{kin}}\right)$$

I0, K1: Modified Bessel functionsE. Schnedermann, J. Sollfrank, and U.
W. Heinz, Phys. Rev. C 48, 2462 (1993). $\rho(r) = tanh^{-1}\beta$, r/R: relative radial position; R: radius of fireball
 β : transverse radial flow velocity, Tkin: Kinetic freeze-out temperature

- Hydrodynamic based model
- Assumes particles are locally thermal at a kinetic freeze-out temperature and moving with a common radial flow velocity
- ↔ Momentum distributions are fitted simultaneously with BW ↔ Two main parameters: T_{kin} and <β>

Blast Wave Fits: π, K, p

Centrality Dependence: T_{kin} and $<\beta>$

T_{kin} decreases from peripheral to central collisions -- Longer lived fireball in central collisions

<β> increases from peripheral to central collisions -- More rapid expansion in central collisions

 T_{kin} versus < β >

STAR : PRC 79 (2009) 034909; ALICE: PRC 88, 044910 (2013)

Anti-correlation: T_{kin} increases,< β > decreases and vice-versa

Energy Dependence: T_{kin} and $<\beta>$

 \diamond < $\!\beta\!\!>$ similar at low BES energies and then increases for higher energies up to LHC

BW Fits: Including Λ and Ξ

Particles: π^+ , K⁺, p, Λ , Ξ^- ; Antiparticles: π^- , K⁻, pbar, Λ bar, Ξ^+

♦ Interesting trends at lower energies but errors are large
 ♦ More detailed studies underway…

Current Status of Phase Diagram

chemical and kinetic freeze-out

XXIV QUARK MATTER DARMSTADT

Summary

❑ Systematic study of kinetic freeze-out properties in heavy-ion collisions (µ_B: 20-400 MeV)

 \Box T_{kin} and < β > show anti-correlation:

- T_{kin} decreases towards central collisions
 -- longer lived fireball
- < β > increases towards central collisions
 - -- more rapid expansion
- $\hfill\Box\hfill\hf$
 - Decreases for higher energies
 - Difference b/w T_{ch} and T_{kin} is large at lower μ_B
 - -- effect of hadronic interactions b/w chemical and kinetic FO

 \Box < β > is almost constant for lower BES energies and increases for higher energies : <m_T> - m for π , K, p also shows similar behavior

Thanks to STAR Collaboration

Back up

Statistical-Thermal Model (THERMUS):

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} = \frac{V T m_i^2 g_i}{2\pi^2} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k} \left(e^{\beta k \mu_i} \right) K_2 \left(\frac{k m_i}{T} \right)$$

 β =1/T; -1(+1) for fermions (bosons), Z=partition function; m_i = mass of hadron species i; V = volume; T = Temperature;

 $K_2 = 2^{nd}$ order Bessel function;

 g_i^- = degeneracy; μ_i = chemical potential

Fitted particle ratios with THERMUS

Used grand-canonical approach

> Two main parameters:
$$T_{ch}$$
 and μ_B

BW fits (data/model)

BW fits (data/model)

Energy dependence: fits with Λ and Ξ

BW fits include: π , K, p, Λ , Ξ and corresponding antiparticles

BW fits include: π , K, p only and corresponding antiparticles

