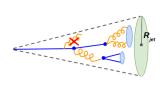
Exploiting the Lund plane to study jet splitting kinematics at RHIC energies

Monika Robotková for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences Czech Technical University in Prague

Physics in and around the Lund Jet Plane, CERN 3 - 7 July, 2023



SoftDrop and CollinearDrop

Our goal is to access parton showers through experimental observables

SoftDrop

- Grooming technique called SoftDrop used to remove soft wide-angle radiation from the jet in order to mitigate non-perturbative (like hadronization and UE) and pileup effects
- Connects parton shower and angular-ordered tree via Cambridge/Aachen (C/A) reclustering

$$\frac{\min(p_{\mathsf{T},1},p_{\mathsf{T},2})}{p_{\mathsf{T},1}+p_{\mathsf{T},2}}>z_{\mathsf{cut}}\theta^\beta,\theta=\frac{\Delta R_{12}}{R_{\mathsf{jet}}}$$

 $p_{T,1}, p_{T,2}$ - transverse momenta of the subjets z_{cut} - threshold (0.1) β - angular exponent (0)

 ΔR_{12} - distance of subjets in the rapidity-azimuth plane

Iterative SoftDrop used to study first, second, and third splits

CollinearDrop

- Probes the soft component of the jet
- Difference of an observable with two different SoftDrop settings of parameters $(z_{cut,1}, \beta_1)$ and $(z_{cut,2}, \beta_2)$
- Our case: $(z_{\text{cut},1}, \beta_1) = (0, 0), (z_{\text{cut},2}, \beta_2) = (0.1, 0)$

2/30

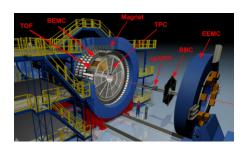
Substructure observables

Momentum and angular observables

Zg	shared momentum fraction	$z_{\rm g} \equiv rac{{ m min}(p_{{ m T},1},p_{{ m T},2})}{p_{{ m T},1}+p_{{ m T},2}}$
$R_{\rm g}$	groomed radius	first ΔR_{12} that satisfies SoftDrop
		condition
k _T	splitting scale	$k_{T} = z_{g} p_{T,jet} \sin R_{g}$

Mass observables

iviass observables		
М	jet mass	$M = \sum_{i \in iet} p_i = \sqrt{E^2 - ec{p} ^2}$
$M_{\rm g}$	groomed jet mass	jet mass after grooming
μ	groomed mass fraction	$\mu \equiv rac{max(m_{j,1},m_{j,2})}{M_{g}}$


STAR experiment

TPC - Time Projection Chamber

- Detection of charged particles for jet reconstruction
- Transverse momenta of tracks: $0.2 < p_T < 30 \text{ GeV}/c$

BEMC - Barrel Electromagnetic Calorimeter

- Detection of neutral particles for jet reconstruction
- Granularity $(\Delta \eta \times \Delta \phi) = (0.05 \times 0.05)$
- Tower requirements:
 0.2 < E_T < 30 GeV

Full azimuthal angle, $|\eta|~<~1$

Dataset:

p+p, $\sqrt{s} = 200$ GeV, 2012

Algorithms:

anti- k_T , C/A

Jets:

Full jets, $20 < p_{T,jet} < 50 \text{ GeV}/c$

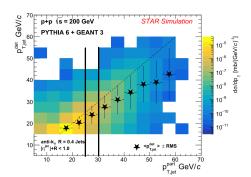
Detector effects correction

- Measurement is affected by finite efficiency and resolution of the instrumentation
- Our goal is to deconvolve detector effects and obtain true distribution from measured one

(2+1)D unfolding (D'Agostini. arXiv:1010.0632(2010))

- 2D unfolding via Iterative Bayesian procedure
- Correction on ensemble level for the 3rd dimension

MultiFold (Andreassen et al. PRL 124, 182001 (2020))


- Machine learning method
- New tool at RHIC
- All observables are simultaneously unfolded in an unbinned way

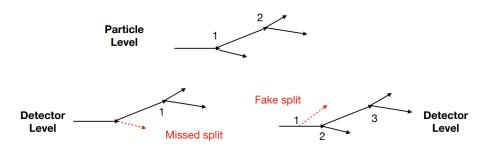
5/30

RooUnfold (2+1)D method for z_g , R_g , and $p_{T,jet}$

- Results are in 3D \rightarrow $z_{\rm g}$ vs. $R_{\rm g}$ is unfolded in 2D and correction for $p_{\rm T,iet}$ in 1D is needed
 - For each particle-level p_{T,jet} bin, we do projection of this bin into detector-level p_{T,jet}, and get the weights from detector-level p_{T,jet} bins

STAR, Phys. Lett. B 811 (2020) 135846

- We unfold $z_{\rm g}$ vs. $R_{\rm g}$ via iterative Bayesian unfolding in 2D using RooUnfold and unfolded spectra for each detector-level $p_{\rm T,jet}$ bin are weighted and summed
- Additional corrections for trigger and jet finding efficiencies are applied


STAR

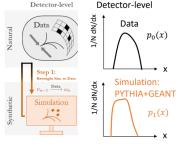
6/30

Monika Robotková

RooUnfold (2+1)D method for $p_{T,jet/initiator}$, z_g , R_g

- Splits can be affected by detector efficiency and resolution
- Observables at a given split are smeared
- Splitting hierarchy is modified going from particle level to detector level

• z_g or R_g vs. $p_{T,jet/initiator}$ unfolded in 2D at each split, followed by a split-hierarchy correction



7/30

MultiFold

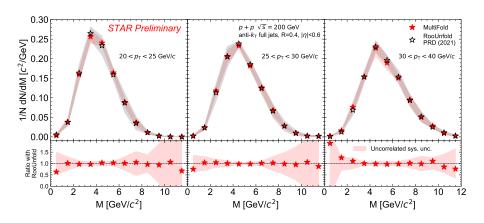
Six observables are simultaneously unfolded in an unbinned way

•
$$p_T$$
, $Q^{\kappa} = \frac{1}{(p_{T,ist})^{\kappa}} \sum_{i \in jet} q_i \cdot (p_{T,i})^{\kappa}$, M , R_g , z_g , M_g

Where does the machine learning part come in?

E.g., Iteration 1, step 1:

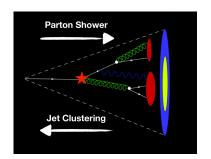
Weights:
$$w(x)=p_0(x)/p_1(x)$$
 Ok for 1D
$$\approx f(x)/(1-f(x)) \stackrel{\text{(Andreassen and Nachman}}{\text{PRD 101, 091901 (2020)}}$$

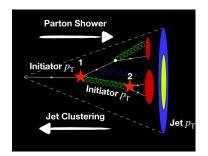

where f(x) is a neural network and trained with the binary crossentropy loss function

> to distinguish jets coming from <u>data</u> vs from <u>simulation</u>

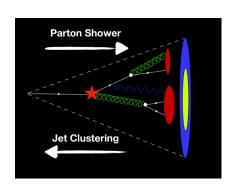
Unfolding → Reweighting histograms → Classification → Neural network

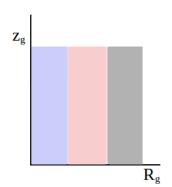
Multifold method for fully corrected jet M

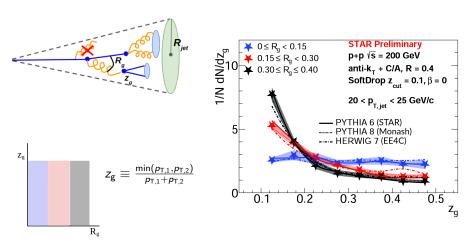



• Multifold results agree with RooUnfold results (STAR Collaboration. PRD 104, 052007(2021))

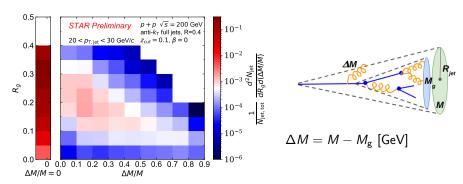
Motivation to study jet substructure at RHIC energies


- Two ways to study the parton shower:
 - Correlation between substructure observables at the first split
 - Evolution of the splitting kinematics as we travel along the jet shower




Correlation between substructure observables at the first split

$z_{\rm g}$ vs. $R_{\rm g}$ at the first split

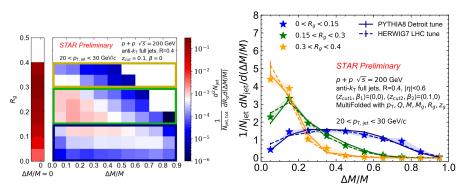


- When we move from collinear splitting to wide angle splitting, $z_{\rm g}$ distribution becomes **steeper** and more **perturbative** (1/z trend of DGLAP)
- MC models describe the trend of the data

Monika Robotková Lund Jet Plane

12/30

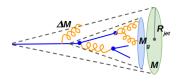
$R_{\rm g}$ vs. $\Delta M/M$ at the first split



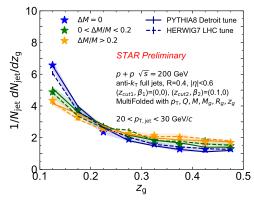
- CollinearDrop used to probe soft component of the jet
- Our parameters: $(z_{\text{cut},1}, \beta_1) = (0, 0), (z_{\text{cut},2}, \beta_2) = (0.1, 0)$
- Unfolded with MultiFold method

13/30

$R_{\rm g}$ vs. $\Delta M/M$ at the first split


- The $\Delta M/M$ distribution is **anti-correlated** with $R_{\rm g}$, which is consistent with angular ordering of the parton shower
- Large groomed jet radius \to little/no soft wide angle radiation (small $\Delta M/M$) in the shower
- MC models describe the trend of the data

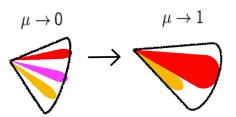
14/30


Monika Robotková

$z_{\rm g}$ vs. $\Delta M/M$ at the first split

$$\Delta M = M - M_g \text{ [GeV]}$$

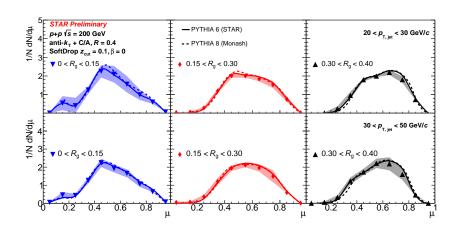
 The more mass that is groomed away relative to the ungroomed mass, the flatter and more non-perturbative the z_g distribution is



• The first splitting that passes SoftDrop can be non-perturbative \rightarrow application of the $\Delta M=0$ selection can filter out the jets with large non-perturbative contribution

μ vs. $R_{\rm g}$ at the first split

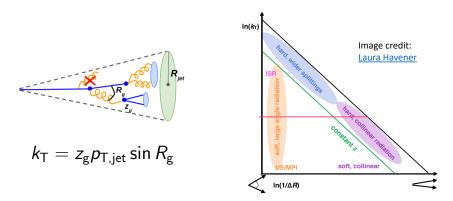
$$\mu \equiv \frac{\max(m_{\mathrm{j},1},m_{\mathrm{j},2})}{M_{\mathrm{g}}}$$



 μ allows us to study mass sharing of the hard splitting

16/30

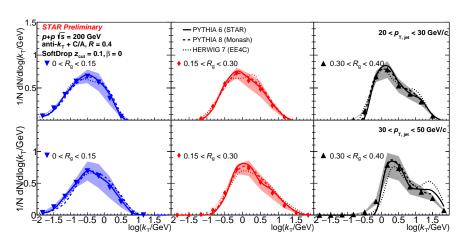
μ vs. $R_{\rm g}$ at the first split for two different $p_{\rm T,iet}$ bins


- Dependence on $R_{\rm g}$ much **weaker** than $\Delta M/M$, largely independent of $p_{\rm T,iet}$, MC models agree with data
- Narrow splits lead to smaller transfer of virtuality or mass

17/30

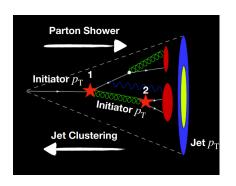
Monika Robotková

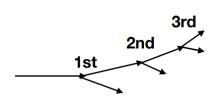
$log(k_T)$ vs. R_g at the first split


 ΔR - distance of subjets in the rapidity-azimuth plane $R_{\rm g}$ - first ΔR that satisfies SoftDrop condition

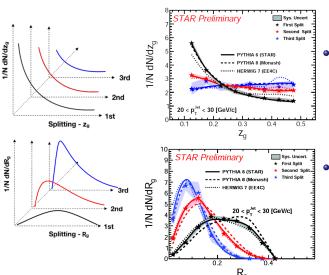
Cutting on R_g moves us to different $k_T \to we$ are probing different parts of the Lund Plane

18 / 30


$log(k_T)$ vs. R_g at the first split for two different $p_{T,jet}$ bins



- $log(k_T)$ has a **strong** dependence on R_g and **weak** dependence on $p_{T,jet}$, MC models describe the trend of the data
- \bullet 0 value corresponds to 1 GeV \to we move from **non-perturbative** to **perturbative** region


Evolution of the splitting observables as we travel along the jet shower

z_g and R_g distributions at 1st, 2nd, and 3rd splits

- Going from $1^{st} \rightarrow 3^{rd}$ split
 - z_g distribution becomes flatter
 - R_g distribution becomes narrower
- Collinear emissions are enhanced when going from 1st to 3rd split

Summary

Correlation at the first split

- New methods for the unfolding were applied (MultiFold, (2+1)D unfolding)
- z_{σ} , $\Delta M/M$, $\log(k_{\rm T})$ have a **weak** dependence on $p_{\rm T, iet}$ and a **strong** dependence on R_{σ}
- Selecting on jet substructure observables and correlations between them allows us to access different regions of the Lund Plane

Splits along the shower

 Observed significantly harder/symmetric splitting at the third/narrow split compared to the first and second splits

Selecting on the split number along the jet clustering tree results in similar change in z_g distributions as selecting on R_g or $\Delta M/M$ at the first split

Jet substructure measurements at RHIC energies allow to disentangle perturbative (early, wide splits) and mostly non-perturbative dynamics (late, narrow splits) within jet showers, and test validity of MC models

22 / 30

Thank you for your attention!

23 / 30

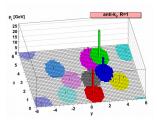
Back up

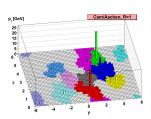
Jet clustering algorithms

• Jets are defined using algorithms

Anti- k_T algorithm

•
$$d_{ij} = \frac{\min(1/p_{Ti}^2, 1/p_{Tj}^2)\Delta R_{ij}^2}{R}$$
, $d_{iB} = 1/p_{Tj}^2$

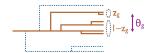

 Clustering starts from the particles with the highest transverse momentum


Cambridge/Aachen (C/A) algorithm

•
$$d_{ij} = \Delta R_{ii}^2 / R^2$$
, $d_{iB} = 1$

 Particles are clustered exclusively based on angular separation, ideal to be used to resolve jet sub-structure

 $d_{i\mathrm{B}}$ - distance of the particle i from the beam p_{T} - transverse momentum ΔR_{ij} - distance between the particle i and j R - jet resolution parameter


Cacciari, Salam, Soyez, JHEP 0804:063 (2008)

25/30

SoftDrop

- Grooming technique used to remove soft wide-angle radiation from the jet
- Connects parton shower and angular tree
 - Jets are first found using the anti-k_T algorithm
 - Recluster jet constituents using the C/A algorithm
 - Jet j is broken into two sub-jets j₁ and j₂ by undoing the last stage of C/A clustering
 - Jet j is final SoftDrop jet, if sub-jets pass the condition on the right, otherwise the process is repeated

Larkoski, Marzani, Thaler, Tripathee, Xue, Phys. Rev. Lett. 119, 132003 (2017)

• Shared momentum fraction z_g

$$z_{\rm g} = \frac{\min(p_{\rm T,1},p_{\rm T,2})}{p_{\rm T,1}+p_{\rm T,2}} > z_{\rm cut}\theta^\beta, \label{eq:zg}$$

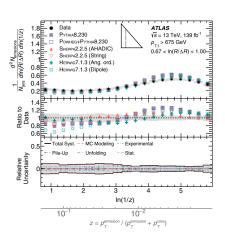
where
$$\theta = \frac{\Delta R_{12}}{R}$$

• Groomed radius R_g - first ΔR_{12} that satisfies SoftDrop condition

 $p_{\mathrm{T},1}, p_{\mathrm{T},2}$ - transverse momenta of the subjets z_{cut} - threshold (0.1)

 β - angular exponent (0)

 ΔR_{12} - distance of subjets in the rapidity-azimuth plane



26 / 30

Monika Robotková

Lund Plane measurement

- Previous ATLAS measurement uses Lund jet plane
- Significant differences in varying hadronization models at high p_{T,jet} at the LHC → we want to study this at lower p_{T,jet}, where non-perturbative effects are expected to be larger
- While Lund jet plane integrates over all splits, we focus on the first split

ATLAS, Phys. Rev. Lett. 124, 222002 (2020)

27 / 30

Data analysis

- p + p collisions at $\sqrt{s} = 200$ GeV, 2012
- ~ 11 million events analyzed

Event and track selection

- ullet Transverse momenta of tracks: 0.2 < $p_{
 m T}$ < 30 GeV/c
- Tower requirements: $0.2 < E_T < 30 \text{ GeV}$

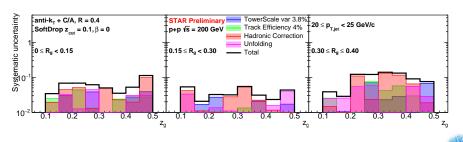
Jet reconstruction

- Jets reconstructed with anti- k_T algorithm, reclustered with the C/A algorithm
- ullet Transverse momenta of jets: $15 < p_{\mathrm{T,jet}} < 40~\mathrm{GeV}/c$
- Resolution parameters: R = 0.4, R = 0.6
- SoftDrop parameters: $z_{\text{cut}} = 0.1$, $\beta = 0$

$$\frac{\min(\rho_{\mathsf{T},1},\rho_{\mathsf{T},2})}{\rho_{\mathsf{T},1}+\rho_{\mathsf{T},2}}>z_{\mathsf{cut}}\left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

28 / 30

2D Bayesian Unfolding


- 2D iterative Bayesian method implemented in the RooUnfold
- Procedure has following steps:
 - The jets at the detector and particle level are reconstructed separately
 - ② Jets are matched based on $\Delta R < 0.6$
 - Jets without match missed jet (particle level) and fake jets (detector level)
 - Response between detector level and particle level for observables is constructed
- We use RooUnfold response which contains Matches and Fakes
 - Unfolding is done separately for $p_{\rm T}^{det}$ intervals 15-20, 20-25, 25-30, 30-40 GeV/c
- Then unfolded spectra are weighted with values from our projection and put together
- Together with trigger missed and unmatched weighted spectra we get our fully unfolded spectrum

Monika Robotková Lund Jet Plane

29/30

Systematic uncertainties

- Systematic uncertainties estimated by varying the detector response
 - Hadronic correction fraction of track momentum subtracted is varied
 - Tower scale variation tower gain is varied by 3.8%
 - Tracking efficiency efficiency is varied by 4%
 - Unfolding iterative parameter is varied from 4 to 6
- Systematics due to prior shape variation will be included in the final publication

 $0 \le R_{\rm g} < 0.15$

 $0.15 \le R_{\rm g} < 0.30$

 $0.30 \le R_{\rm g} \le 0.40$

