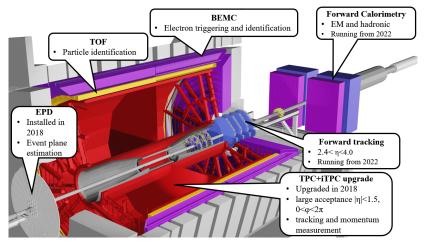
STAR measurements sensitive to hadronization and underlying event/multiple parton interactions

Leszek Kosarzewski for the STAR Collaboration

Ohio State University

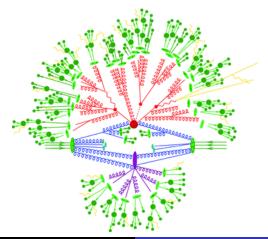
MPI@LHC 20.11.2023

STAR experiment


Soft vs. hard production mechanisms with quarkonium

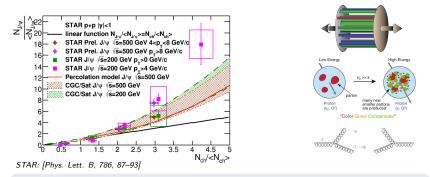
Effect of jets on underlying event

Detroit Pythia8 Tune



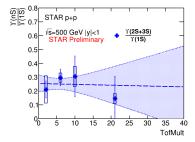
• STAR is a well suited machine for high multiplicity studies thanks to its large TPC

Soft vs. hard production mechanisms

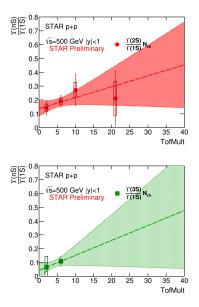

Studied with quarkonium production vs. multiplicity

- What is the collision energy dependence?
- How the scale of the hard process (p_T, m) affects the production?

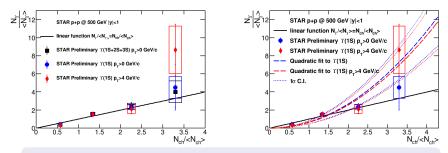
 $J/\psi \sqrt{s} = 200 \text{ GeV}$ vs. $\sqrt{s} = 500 \text{ GeV}$ production vs. event activity


p+p $\sqrt{s}=200,500~{\rm GeV}$ 2012, 2011 datasets, $J/\psi \to e^+e^-$

- Strong increase of J/ψ production with N_{ch} , a measure of "event activity"
- Percolation model: [E. G. Ferreiro, C. Pajares, Phys.Rev.C, 86, 034903(2012)]
 - Low-p_T data are well described
 - High- p_T data are above the model at high $N_{ch}.$ Note that the calculation is for $p_T>0~{\rm GeV/c}$
- CGC/Saturation model: [E. Levin et al., EPJC 97(5), 376(2019)], [E. Levin et al., EPJC 80(6), 560(2020)]
 - · Describes the data, however uncertainties are large
 - Data are slightly above the model at high $p_T.$ Note that the calculation is for $p_T>0~{\rm GeV/c}$
- Possible effects of parton saturation


Cross section ratios: $\Upsilon(nS)/\Upsilon(1S)$

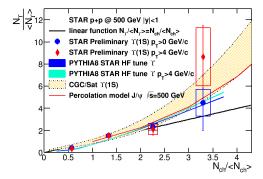
p+p $\sqrt{s}=500~{
m GeV}$ 2011 dataset, $arY
ightarrow e^+e^-$



[W. Zha, et al, Phys.Rev.C 88,067901(2013)]

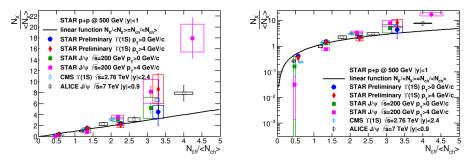
- Ratios vs. TofMult no strong multiplicity dependence observed.
- TofMult: number of tracks matched to TOF within |η| < 1, p_T > 0.2 GeV/c (uncorrected)
- Linear fits (solid line) and 1σ uncertainty (dashed line)

p+p $\sqrt{s}=500~{
m GeV}$ 2011 dataset, $arY
ightarrow e^+e^-$


- Self-normalized yield vs. self-normalized multiplicity in p+p $\sqrt{s} = 500 \text{ GeV}$ measured for $\Upsilon(1S + 2S + 3S)$ and $\Upsilon(1S)$
- Data consistent with a linear rise (black line), with a hint for stronger-than-linear rise for $\Upsilon(1S)$ above $p_T > 4 \, {\rm GeV/c}$
- Percolation model predicts quadratic dependence $\frac{N_{hard}}{\langle N_{hard} \rangle} = \langle \rho \rangle \left(\frac{\frac{dN_{ch}}{d\eta}}{\langle \frac{dN_{ch}}{d\eta} \rangle} \right)^2$ at

high multiplicity [E. G. Ferreiro, C. Pajares, Phys.Rev. C, 86, 034903 (2012)]

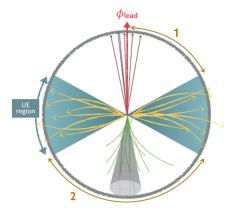
• Quadratic fit $y = ax^2$ describes the data, suggest quenching due to overlapping strings


Υ production vs. event activity - models

p+p $\sqrt{s}=500~{
m GeV}$ 2011 dataset, $arY
ightarrow e^+e^-$

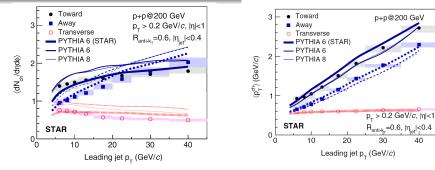
- PYTHIA8 and Percolation models reproduce the trend in the data [E. G. Ferreiro, C. Pajares, Phys.Rev.C, 86, 034903(2012)]
 - MPI or string quenching effects
- CGC/Saturation model describes the data within large uncertainties [E. Levin M. Siddikov, EPJC, 97(5), 376(2019)], [EPJC 80(6), 560(2020)]
 - Hint of saturation effects

p+p $\sqrt{s} = 500~{
m GeV}$ 2011 dataset, $\varUpsilon
ightarrow e^+e^-$

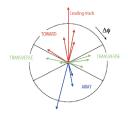


[JHEP04,103(2014)], [Phys.Lett.B 712,165-175(2012)], STAR [Phys.Lett.B 786,87-93(2018)]

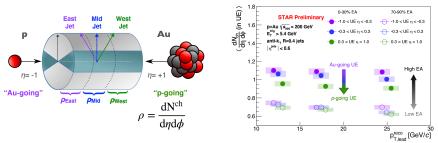
- Similar trend at RHIC and LHC for Υ and J/ψ
 - · Seems to be independent of mass or collision energy


Effect of jets on underlying event

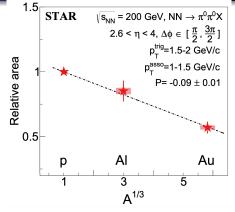
- Study jets and correlations vs. underlying event
- Underlying event can be studied in the transverse direction relative to jet


[V. Verkest, DNP 2022]

Jets vs. underlying event


STAR: [Phys. Rev. D 101, 052004]

- Studies of UE in jets in 3 regions:
 - toward, away, transverse
- The $< \frac{dN_{ch}}{d\eta d\phi} >$ increases with leading jet p_T in the toward and away directions
- Strong dependence of < p_T > on leading jet p_T in the toward and away directions
- Weak dependence of $<\frac{dN_{ch}}{d\eta d\phi}>$ and $< p_T>$ in the transverse direction
- Hint of small contributions to UE from initial (ISR) and final state radiation (FSR)


[J. Fiete G-O, Joliot-Curie International School 2018]

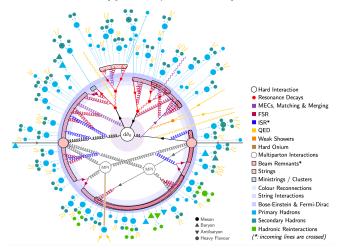
OSL

- \bullet Underlying event UE is defined as charged particles within $1 < |\phi_{\mathit{lead}} \phi_{\mathit{UE}}| < \pi 1$
- Higher UE N_{ch} in events with large event activity measured by the BBC in Au-going direction
- Larger UE in the Au-going direction
 - No significant dependence on leading jet p_T

Evidence of non-linear gluon dynamics

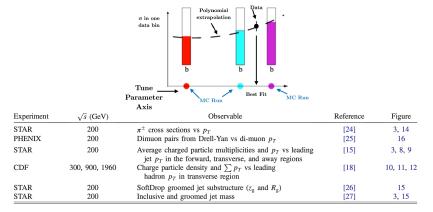
STAR: [Phys. Rev. Lett. 129, 092501]

- Opportunity to test CGC with jets
- Back-to-back azimuthal correlations of di- π_0 at forward pseudorapidity (2.6 < η < 4.0)

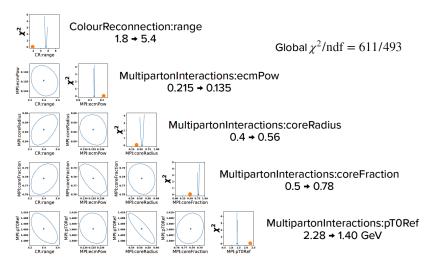

• measured in p + p, p + AI, and p + Au

- Relative area: area of away-side peak of the correlation function with respect to p+p
- Clear A-dependent suppression of back-to-back yields in p + A compared to p + p for small-x (and Q^2) pairs with low p_T

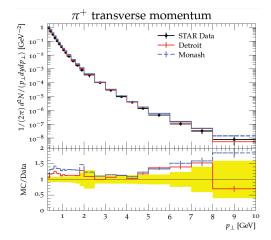
STAR Pythia8 "'Detroit"' Tune


Towards comprehensive description of p + p collisions at RHIC energy (not only!)

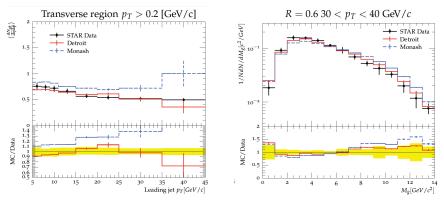
[Aguilar et al., Phys. Rev. D 105, 016011]


OSU

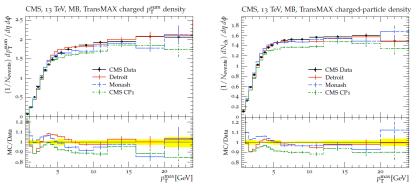
Detroit Pythia8 Tune - input data and procedure


- Tuned using Professor tool: [EPJC 65 (2010) 331-357]
 - Interpolate
 - Minimize χ^2
- Used a wide data sample from STAR and Tevatron
 - Combines soft and hard processes
 - Cross sections, multiplicity distributions, jet characteristics
 - Included in Rivet

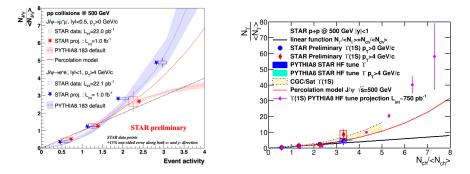
Detroit Tune - tuned parameters



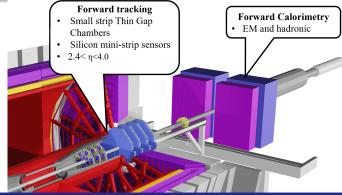
[Aguilar et al., Phys. Rev. D 105, 016011]


$$p_{T,0} = p_{T,0}^{ref} (\frac{\sqrt{s}}{\sqrt{s}}_{ref})^{ecmPow}$$

• Better description of STAR data with Detroit than Monash tune


- Better description of STAR data with Detroit than Monash tune
- Simultaneous description of underling event and jet substructure

- High p_T better description with Detroit than Monash
- Low p_T larger variation due to the proton shape used
- In general better performance when extrapolating from RHIC energy to LHC
 - This opens a possibility of more tuning at lower energies
 - Will be important for upcoming Electron Ion Collider


Prospects for J/ψ and Υ

Projections 2017+2022

- High precision measurement of J/ψ and Υ dependence on normalized N_{ch}
- Very high integrated luminosity:
 - $\mathcal{L}_{int} \sim 750 \text{ pb}^{-1}$ for Barrel High Tower triggered *e* high energy electrons
 - $\mathcal{L}_{int} \sim 375 \ \mathrm{pb}^{-1}$ for $\mu\mu$ triggers
- Possible to discriminate different models
- 2017 data is already 10x more than 2011

Prospects - Forward Upgrade

Future plans for STAR

- Forward upgrade $2.5 < y < 4^{a}$ already installed and running
 - Silicon detectors (FST) tracking
 - Small-strip Thin Gap Chambers (sTGC) tracking
 - · Electromagnetic and hadronic calorimeters jet energy measurements
- High integrated luminosity for precision quarkonium production studies both at mid and forward rapidity
- Collect p + p, p + A, Au + Au data at 200 GeV for comprehensive studies

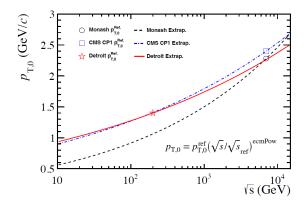
^ahttps://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

Summary

Multiplicity dependence of quarkonium production

- \bullet Similar trend observed for J/ψ and \varUpsilon at RHIC and LHC
 - Same effects at different energies and mass scales
- Percolation Model, PYTHIA and CGC/Sat models qualitatively describe the data
 - Indication of quarkonium production in MPI
 - Possible effect of parton saturation
- More data coming as well as opportunity to study it at forward vs. mid-rapidity

Studies of UE with jets and correlations


- UE measured in the transverse region shows very weak dependence on leading jet $p_{\rm T}$
 - Hint of small contributions of ISR and FSR to UE
- di- π_0 correlations at forward η show indication of non-linear gluon effects

STAR Pythia8 Detroit tune

- Optimized Underlying Event and MPI parameters as well as PDFs
- Better performance than Monash tune at RHIC and Tevatoron energies
- Good performance at LHC suggests its better to extrapolate from low to high energies
 - More opportunities of tuning at low energies
 - Important for future EIC

Thank you for your attention!

BACKUP

