

A Novel and Compact Muon Telescope Detector at STAR for Dilepton Program at RHIC

NATIONAL LABORAT

Lijuan Ruan for the STAR Collaboration

(Brookhaven National Laboratory)

Outline:

- Introduction and physics motivation for STAR-MTD
- Simulation
- R&D results
- Conclusions

http://www.star.bnl.gov/~ruanlj/MTDreview2010/mtd.htm

http://www.star.bnl.gov/~ruanlj/MTDreview2010/MTD_proposal_v14.pdf

STAR-MTD Physics Motivation

A large area of muon telescope detector (MTD) at mid-rapidity, **allows for the detection of**

- **di-muon pairs** from QGP thermal radiation, quarkonia, light vector mesons, resonances in QGP, and Drell-Yan production
- single muons from the semi- leptonic decays of heavy flavor hadrons
- advantages over electrons: no γ conversion, much less Dalitz decay contribution, less affected by radiative losses in the detector materials, trigger capability in Au+Au
- trigger capability for low to high p_T J/ψ in central Au+Au collsions excellent mass resolution, separate different upsilon states e-muon correlation to distinguish heavy flavor production from initial lepton pair production

Concept of Design of the STAR-MTD

Single Muon and J/ ψ Efficiency

- 1. muon efficiency at $|\eta| < 0.5$: 36%, pion efficiency: 0.5-1% at $p_T > 2$ GeV/c
- 2. muon-to-pion enhancement factor: 50-100
- 3. muon-to-hadron enhancement factor: 100-1000 including track matching, tof and dE/dx
- 4. dimuon trigger enhancement factor from online trigger: 40-200 in central Au+Au collisions

10/29/2011

DNP 2011, East Lansing, Lijuan Ruan (BNL)

High Mass Di-muon Capabilities

- J/ψ: S/B=6 in d+Au and S/B=2 in central Au+Au
- 2. With HFT, study $B \rightarrow J/\psi X$; $J/\psi \rightarrow \mu \mu$ using displaced vertices
- 3. Excellent mass resolution: separate different upsilon states

Heavy flavor collectivity and color screening, quarkonia production mechanisms:

 $J/\psi~R_{AA}$ and $v_2;$ upsilon $R_{AA}~\ldots$

Z. Xu, BNL LDRD 07-007; L. Ruan et al., Journal of Physics G: Nucl. Part. Phys. 36 (2009) 095001 Quarkonium dissociation temperatures - Diaal, Karsch, Satz

state	${\rm J}/\psi(1S)$	$\chi_c(1\mathrm{P})$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

Future Measurement Projection

Distinguish Heavy Flavor and Initial Lepton Pair Production: e-muon Correlation

 e_{μ} correlation simulation with Muon Telescope Detector at STAR from ccbar:

S/B=2 (M_{eu} >3 GeV/c² and $p_T(e\mu)$ <2 GeV/c)

S/B=8 with electron pairing and tof association

10/29/2011

Run 10 Performance: Time and Spatial Resolution

STAR

Summary

- MTD will advance our knowledge of Quark Gluon Plasma: trigger capability for low to high p_T J/ψ in central Au+Au collsions excellent mass resolution, separate different upsilon states e-muon correlation to distinguish heavy flavor production from initial lepton pair production rare decay and exotics ... different background contribution provides complementary
 - measurements for dileptons
- The prototype of MTD works at STAR from Run 7 to Run 11. Results published at L. Ruan et al., Journal of Physics G: Nucl. Part. Phys. 36 (2009) 095001; 0904.3774; Y. Sun et al., NIMA 593 (2008) 430; Y. Wang et al., NIMA 640 (2011) 85.
- The MTD project is funded: the construction has started and will end in Mar. 2014:10% installation for Run 12, 43% for Run 13, 80% for Run 14.

10/29/2011

Delivered luminosity: 2013 projected; Sampled luminosity: from STAR operation performance

Collision system	Delivered Iumi. 12 weeks	Sampled Iumi. 12 weeks (70%)	Υ counts	Min. Iumi. precision on ℃ (3s) (10%)	Min. Iumi. precision on ℃ (2s+3s) (10%)
200 GeV p+p	200 pb ⁻¹	140 pb ⁻¹	390	420 pb⁻¹	140 pb ⁻¹
500 GeV p+p	1200 pb ⁻¹	840 pb ⁻¹	6970	140 pb ⁻¹	50 pb⁻¹
200 GeV Au+Au	22 nb ⁻¹	16 nb⁻¹	1770	10 nb⁻¹	3.8 nb ⁻¹

Upsilon in 500 GeV p+p collisions can also be measured with good precision.

The Details for the R&D Modules

Conditions	Modules and readout				
Cosmic ray and Fermi-lab T963 beam tests	double stacks, module size: $87(z) \times 17(\phi) \text{ cm}^2$, Performance: 60 ps, ~0.6 cm at HV ± 6.3 kV				
Run 7: Au+Au Run 8: p+p, d+Au	double stacks, 2 modules in a tray, module size: $87(z) \times 17(\phi) \text{ cm}^2$, Readout: trigger electronics, Time resolution: 300 ps				
Run 9: p+p Run 10: Au+Au, cosmic ray	double stacks, 3 modules in a tray, module size: $87(z) \times 17(\phi) \text{ cm}^2$, Readout: TOF electronics; trigger electronics for trigger purpose.				
Run 11	single stack, 1 module in a tray, modulesize: 87(z)×52(φ) cm²,Readout: TOF electronics; triggerelectronics for trigger purpose,Cosmic ray test performance: <100 ps				

R&D from 2007 to 2011 led to a final design.

Trigger Capability with MTD Acceptance

RHIC II lumonisity in terms of collision rate: 40 k Hz; Au+Au projection: based on Run 10 prototype performance.

tı	rigger time window	double-hit rejection factor	dimuon L0 trigger rate
	2 ns	50	800 Hz
	1.5 ns	116	185 Hz
	1 ns	509	80 Hz

1 ns trigger window: 80 Hz for dimuon trigger

L0 trigger timing resolution (assumed)	di-muon trigger efficiency of the timing cut
140 ps	±3.6σ (100%)
200 ps	±2.5σ (98%)
300 ps	±1.7σ (80%)

STAR

MTD Schedule

	Q4 (FY09)	Q1-2 (FY10)	Q3-4 (FY10)	Q1-2 (FY11)	Q3-4 (FY11)	Q1-2 (FY12)	Q3-4 (FY12)	Q1-2 (FY13)	Q3-4 (FY13)	Q1 (FY14)
MRPC Module		Design			Production					
Proposal Design										
US MTD Constru.				-						
Electronics	Design				Production					
Tray		Design			Product	ion				
Install/Com mission										
Physics Data										

10% installation for Run12, 43% for Run13, 80% for Run 14. Finish the project by Mar, 2014

 MTD institutions: Brookhaven National Laboratory, University of California, Berkeley, University of California, Davis, Rice University, University of Science & Technology of China, Texas A&M University, University of Texas, Austin, Tsinghua University, Variable Energy Cyclotron Centre
US institutions: the electronics, the assembly of the trays and the operation of the detector Chinese and Indian institutions: the fabrication of the MRPC modules 10/29/2011
DNP 2011, East Lansing, Lijuan Ruan (BNL)